checked by NT 2/6/17

CETIFICATION

SDG No:

JC33945

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

SM04.00.06/4th Quarter 2016 GW Sampling - Onsite Wells

Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken December 14-16, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the parameters shown in Table 1. The results were reported under SDG No.: JC33945. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. Individual data review worksheets are enclosed for each target analyte group. The data sample summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC33945-1	S43-S	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides; Inorganics; Methane
JC33945-2	S-43D	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides
JC33945-3	FB-121516	AQ- Field Blank Water	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides
JC33945-4	EB-121516	AQ- Equipment Blank	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides
JC33945-5	TB-121516RS	AQ – Trip Blank Water	LMWA
JC33945-6	EB-121616	AQ- Equipment Blank	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides
JC33945-7	MW-13	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA
JC33945-8	MW-7	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA
JC33945-9	S-42S	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides; Inorganics; Methane
JC33945-10	\$-42D	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides
JC33945-11	TB-121516NR	AQ – Trip Blank Water	LMWA
JC33945-12	MW-22S	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides; Inorganics; Methane

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC33945-13	FB121416	AQ – Field Blank Water	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides
JC33945-14	S-31R(2)	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides
JC33945-14D	S-31R(2) MSD	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides
JC33945-14S	S-31R(2) MS	Groundwater	VOCs; SVOCs; PAHs + 1,4-Dioxane (SIM); LMWA; Pesticides
JC33945-15	TB121616NRA	AQ – Trip Blank water	VOCs; LMWA

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature: Date:

January 27, 2017

Méndez LIC. # 1888

A 1600873

Page 1 of 1

Client Sample ID: S-43S Lab Sample ID:

JC33945-1

Matrix: Method: AQ - Ground Water

SW846 8260C

DF

1

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Date

Prep Batch n/a

Analytical Batch V4B2787

Run #1 Run #2

Purge Volume

Run #1 Run #2 5.0 ml

File ID

4B67801.D

CAS No. Compound Result

Analyzed

12/26/16

RL

Run# 2

By

HT

MDL

n/a

Units

Q

106-99-0 1,3-Butadiene ND Run#1 5.0 0.17 ug/l

CAS No. **Surrogate Recoveries** Dibromofluoromethane 1868-53-7

17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8 4-Bromofluorobenzene 460-00-4

101% 102% 96% 102%

73-122% 84-119% 78-117%

76-120%

Limits

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS Accutest

Report of Analysis

Page 1 of 3

Client Sample ID: S-43S

Lab Sample ID: JC33945-1

Matrix:

AQ - Ground Water

Date Sampled: 12/15/16

Q

Method:

SW846 8270D SW846 3510C

Date Received: 12/17/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Elle ID		
1.0,000	Biribirio, Banani	50

1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	P110165.D	1	12/30/16	AN	12/22/16	OP99421	EP4892
Run #2	P110184.D	100	01/03/17	RL	12/22/16	OP99421	EP4893

	Initial Volume	Final Volume
Run #1	950 ml	1.0 ml
Run #2	950 ml	1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.3	0.86	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.94	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.3	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/l
	3&4-Methylphenol	ND	2.1	0.93	ug/l
88-75-5	2-Nitrophenol	ND	5.3	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.2	1.5	ug/l
108-95-2	Phenol	ND	2.1	0.41	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.97	ug/l
83-32-9	Acenaphthene	ND	1.1	0.20	սք/1
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l
98-86-2	Acetophenone	ND	2.1	0.22	ug/l
120-12-7	Anthracene	1.3	1.1	0.22	ug/l
1912-24-9	Atrazine	ND	2.1	0.47	ug/l
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.1	0.22	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l
106-47-8	4-Chloroaniline	ND	5.3	0.36	ug/l
86-74-8	Carbazole	ND	1.1	0.24	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-43S Lab Sample ID:

JC33945-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

ADIT ICE	Special Dist					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.68	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.42	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.58	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.53	ug/l	
123-91-1	1,4-Dioxane	1990 a	110	69	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.52	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.34	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.52	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.9	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/1	
91-57-6	2-Methylnaphthalene	ND	1.1	0.22	ug/l	
88-74-4	2-Nitroaniline	ND	5.3	0.29	ug/l	
99-09-2	3-Nitroaniline	ND	5.3	0.41	ug/l	625.60
100-01-6	4-Nitroaniline	ND	5.3	0.46	ug/l	SOCIABO
98-95-3	Nitrobenzene	ND	2.1	0.68	ug/l	Bar
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.51	ug/l	Partiel Inflam Mendez LIC. # 1888
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.23	ug/l	Pofuel Influe
85-01-8	Phenanthrene	ND	1.1	0.18	ug/l	Mendez
129-00-0	Pyrene	ND	1.1	0.23	ug/l	LIC # 1888
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/l	Plance
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	100
			one h		VSV	

ND = Not detected

367-12-4

MDL = Method Detection Limit

38%

0% b

RL = Reporting Limit

E = Indicates value exceeds calibration range

2-Fluorophenol

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

Client Sample ID: S-43S

Lab Sample ID: JC33945-1

Matrix:

AQ - Ground Water

Method: SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	27%	0% b	10-110%
118-79-6	2,4,6-Tribromophenol	86%	0% b	39-149%
4165-60-0	Nitrobenzene-d5	70%	0% b	32-128%
321-60-8	2-Fluorobiphenyl	76%	0% b	35-119%
1718-51-0	Terphenyl-d14	49%	0% b	10-126%

(a) Result is from Run# 2

(b) Outside control limits due to dilution.

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: S-43S

Lab Sample ID: JC33945-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Q

Percent Solids: n/a

By **Prep Batch** Analytical Batch File ID DF Analyzed Prep Date OP99421A E4M3174 Run #1 4M69246,D 1 12/23/16 SG 12/22/16

Run #2

Final Volume Initial Volume 950 ml

Run #1 Run #2 1.0 ml

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.053	0.024	ug/l
50-32-8	Benzo(a)pyrene	ND	0.053	0.035	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.046	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.035	ug/l
218-01-9	Chrysene	ND	0.11	0.027	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.038	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.040	ug/l
91-20-3	Naphthalene	ND	0.11	0.031	ug/l

	•			_		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-60-0	Nitrobenzene-d5	58%		24-125%		
321-60-8	2-Fluorobiphenyl	57%		19-127%		
1718-51-0	Terphenyl-d14	33%		10-119%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

Prep Date

n/a

Page 1 of 1

Client Sample ID: S-43S Lab Sample ID:

JC33945-1

Matrix:

AQ - Ground Water

DF

1

SW846-8015C (DAI)

Method: Project:

Run #1

Run #2

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16

n/a

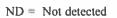
Percent Solids: n/a

Prep Batch

Analytical Batch GGH5594

LOW	Molecu	ilar A	Icahal	Liet

File ID


GH107884.D

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	107%		56-1	45%	
111-27-3	Hexanol	94%		56-1	45%	

Analyzed

12/21/16

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-43S Lab Sample ID:

JC33945-1

Matrix:

AQ - Ground Water

Method:

CAS No.

RSK-175

Compound

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

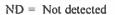
Q

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AA56490.D	100	12/21/16	LM	n/a	n/a	GAA1098
Run #2							

RL


MDL

Units

74-82-8 Methane 4630 11 3.6 ug/l

Result

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-43S

Lab Sample ID: JC33945-1

Matrix:

AQ - Ground Water

Method:

SW846 8081B SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Q

Date Received: 12/17/16

Percent Solids: n/a

File ID DF Analyzed By **Prep Date** Prep Batch Analytical Batch Run #1 8G1412.D 12/21/16 CP 12/21/16 OP99350 G8G46 1

Run #2

Run #1

Initial Volume

1000 ml

Final Volume

Run #2

10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0060	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0060	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0046	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0050	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0051	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-l	ND	0.010	0.0050	ug/!
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/i
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0065	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.18	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	89%		26-13	32%
877-09-8	Tetrachloro-m-xylene	85%		26-13	32%
2051-24-3	Decachlorobiphenyl	47%		10-1	18%
2051-24-3	Decachlorobiphenyl	43%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

JC33945-1

Matrix:

AQ - Ground Water

Date Sampled: 12/15/16

Percent Solids: n/a

Date Received: 12/17/16

Project:

BMSMC, Building 5 Area, PR

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	8470 359	100 15	12 0.39	ug/l ug/l			12/23/16 ND 12/23/16 ND	SW846 6010C ¹ SW846 6010C ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA41036 (2) Prep QC Batch: MP97784

Client Sample ID: S-43S

Lab Sample ID: JC33945-1

Matrix: AQ - Ground Water

Date Sampled: 12/15/16 **Date Received:** 12/17/16

Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	99.2	5.0	mg/l	1	12/23/16 19:45	СВ	SM2320 B-11
Iron, Ferric ^a	7.5	0.30	mg/l	1	12/23/16 22:30	ND	SM3500FE B-11
Iron, Ferrous b	1.0	0.20	mg/l	1	12/19/16 22:45	HS	SM3500FE B-11
Nitrogen, Nitrate c	0.14	0.11	mg/l	1	01/02/17 10:56	YZ	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	0.14	0.10	mg/l	1	01/02/17 10:56	YZ	EPA 353.2/LACHAT
Nitrogen, Nitrite d	< 0.010	0.010	mg/l	1	12/17/16 17:29	YR	SM4500NO2 B-11
Sulfate	< 10	10	mg/l	Ī	01/06/17 02:56	CD	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	ī	12/20/16 11:29	JA	SM4500S2- F-11

(a) Calculated as: (Iron) - (Iron, Ferrous)

(b) Field analysis required. Received out of hold time and analyzed by request.

(c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time.

(d) Received and analyzed out of holding time.

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sample ID: S-43D

Lab Sample ID: JC33945-2

Matrix: Method: AQ - Ground Water

SW846 8260C Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

Prep Batch File ID DF **Prep Date Analytical Batch** Analyzed By Run #1 4B67815.D 1 12/26/16 HT V4B2787 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound Result RL **MDL** Units Q

106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

1868-53-7 Dibromofluoromethane 99% 76-120% 17060-07-0 1.2-Dichloroethane-D4 102% 73-122% 2037-26-5 Toluene-D8 96% 84-119%

460-00-4 4-Bromofluorobenzene 104% 78-117%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS Accutest

Report of Analysis

Page 1 of 3

Client Sample ID: S-43D

Lab Sample ID: JC33945-2

Matrix: Method:

Project:

AQ - Ground Water SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Q

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	P110166.D	1	12/30/16	AN	12/22/16	OP99421	EP4892
Run #2	P110186.D	50	01/03/17	RL	12/22/16	OP99421	EP4893

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l
51-28-5	2,4-Dinitrophenol	ND	01	1.6	ug/l
534-52-1	4.6-Dinitro-o-cresol	ND	5.0	1.3	បខ្/1
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	1.1	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l
					-

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-43D Lab Sample ID: JC33945-2

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	1680 a	50	33	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/i	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	- ANADA
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	of January Co
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l /	3
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/1 / 💆	Infael Infante
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	Méndez 言
129-00-0	Pyrene	ND	1.0	0.22	ug/l\	\
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	nā/l /e	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	CHIMICO LIC.
367-12-4	2-Fluorophenol	39%	0% b	14-8		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-43D Lab Sample ID: JC33945-2

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	27%	0% b	10-110%
118-79-6	2,4,6-Tribromophenol	96%	0% b	39-149%
4165-60-0	Nitrobenzene-d5	70%	0% b	32-128%
321-60-8	2-Fluorobiphenyl	78%	0% b	35-119%
1718-51-0	Terphenyl-d14	63%	0% b	10-126%

(a) Result is from Run# 2

(b) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sample ID: S-43D Lab Sample ID: JC33945-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4M69247.D	1	12/23/16	SG	12/22/16	OP99421A	E4M3174
Run #2							

	Initial Volume	Final Volume
Run #I	1000 ml	1.0 ml
I		

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthracene	ND	0.050	0.023	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.050	0.033	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.043	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.033	ug/l	
218-01-9	Chrysene	ND	0.10	0.026	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.036	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.038	ug/l	
91-20-3	Naphthalene	ND	0.10	0.029	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	57%		24-1	25%	
321-60-8	2-Fluorobiphenyl	55%		19-1	27%	
1718-51-0	Terphenyl-d14	40%		10-1	19%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-43D

Lab Sample ID:

JC33945-2

Matrix: Method: AQ - Ground Water SW846-8015C (DAI)

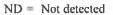
Project:

Run #2

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16


Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107885.D	1	12/21/16	XPL	n/a	n/a	GGH5594

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	108%		56-1	45%	
111-27-3	Hexanol	95%		56-1	45%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

CP

12/21/16

Page 1 of 1

Client Sample ID: S-43D

Lab Sample ID: JC33945-2 Matrix:

Method: Project:

AQ - Ground Water

DF

1

SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR

Analyzed

12/21/16

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

OP99350

Q

Prep Date Prep Batch **Analytical Batch**

G8G46

Run #1 Run #2

> **Initial Volume** Final Volume

990 ml

File ID

8G1413.D

10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No. Compound		Result	RL	MDL	Units	(
309-00-2	Aldrin	ND	0.010	0.0061	ug/l	
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l	
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l	
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l	
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l	
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l	
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l	
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l	
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l	
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l	
72-20-8	Endrin	ND	0.010	0.0051	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l	
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l	
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l	
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l	
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l	
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l	
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l	
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

877-09-8 Tetrachloro-m-xylene 98% 26-	132%
877-09-8 Tetrachloro-m-xylene 90% 26-	132%
2051-24-3 Decachlorobiphenyl 39% 10-	118%
2051-24-3 Decachlorobiphenyl 37% 10-	118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

JC33945-3

Matrix:

AQ - Field Blank Water

Method:

SW846 8260C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

File ID DF $\mathbf{B}\mathbf{y}$ **Prep Date Analytical Batch** Analyzed Prep Batch 4B67814.D 12/26/16 V4B2787 HT n/a n/a

Run #1 Run #2

Purge Volume

Run #1 Run #2 5.0 ml

Compound

Result

RL

MDL

Units

Q

106-99-0

CAS No.

1,3-Butadiene

ND

5.0

Run# 2

0.17

ug/l

CAS No. **Surrogate Recoveries**

1868-53-7 Dibromofluoromethane 1,2-Dichloroethane-D4 17060-07-0 2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene Run#1

100% 102% 96%

110%

Limits 76-120%

73-122% 84-119% 78-117%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JC33945-3

Matrix: AQ - Field Blank Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Q

Date Received: 12/17/16

Percent Solids: n/a

File ID DF Analyzed By **Prep Date** Prep Batch **Analytical Batch** Run #1 P110167.D 12/30/16 AN 12/22/16 OP99421 EP4892 ŧ

Report of Analysis

Run #2

Method:

Project:

Initial Volume **Final Volume**

Run #1

920 ml

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.4	0.89	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	0.97	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.4	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.4	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.97	ug/l
	3&4-Methylphenol	ND	2.2	0.96	ug/l
88-75-5	2-Nitrophenol	ND	5.4	1.0	ug/l
100-02-7	4-Nitrophenol	ND	7.11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	4.3	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.43	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.49	ug/l
100-52-7	Benzaldehyde	ND	5.4	0.31	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.50	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.4	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

fael Infant Méndez IC # 1888

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FB-121516 Lab Sample ID: JC33945-3

Matrix: AQ - Field Blank Water Method: SW846 8270D SW846 3510C Date Received: 12/17/16 Percent Solids: n/a

Date Sampled: 12/15/16

Project:

BMSMC, Building 5 Area, PR

Report of Analysis

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.71	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.30	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.60	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.52	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.55	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.54	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.42	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/i	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.4	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	0.42	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.48	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.70	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.52	ug/l	COCHOO
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.24	ug/l	198
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	10 A 100 M
129-00-0	Pyrene	ND	1.1	0.24	ug/l	Infante
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.40	ug/l	Méndez LIC # 1888
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	CUMINA
367-12-4	2-Fluorophenol	43%		14-8	8%	4.00
4165-62-2	Phenol-d5	29%		10-1	10%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix: Method:

Project:

AQ - Field Blank Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	96%		39-149%
4165-60-0	Nitrobenzene-d5	70%		32-128%
321-60-8	2-Fluorobiphenyl	78%		35-119%
1718-51-0	Terphenyl-d14	92%		10-126%

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Project:

Report of Analysis

Page 1 of 1

Client Sample ID: FB-121516 Lab Sample ID: JC33945-3

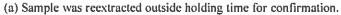
Matrix: AQ - Field Blank Water Method:

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Received: 12/17/16

Percent Solids: n/a


Date Sampled: 12/15/16

	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
Run #1 a	4M69248.D	1	12/23/16	SG	12/22/16	OP99421A	E4M3174
Run #2 b	4P20582.D	1	01/06/17	SG	01/05/17	OP99671A	E4P1125

	Initial Volume	Final Volume
Run #1	920 ml	1.0 ml
Run #2	950 ml	1.0 ml

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.054	0.025	ug/l
50-32-8	Benzo(a)pyrene	ND	0.054	0.036	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.047	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.036	ug/l
218-01-9	Chrysene	ND	0.11	0.028	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.039	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.041	ug/l
91-20-3	Naphthalene	ND	0.11	0.032	ug/l
123-91-1	1,4-Dioxane a	0.174	0.11	0.053	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its

4165-60-0	Nitrobenzene-d5	59%	86%	24-125%
321-60-8	2-Fluorobiphenyl	55%	64%	19-127%
1718-51-0	Terphenyl-d14	54%	75%	10-119%

(b) Confirmation run.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: FB-121516 Lab Sample ID:

JC33945-3

Matrix:

AQ - Field Blank Water

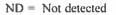
Method: Project:

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16


Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107886.D	1	12/21/16	XPL	n/a	n/a	GGH5594
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	սը/1	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
111-27-3	Hexanol	116%		56-1	45%	
111-27-3	Hexanol	97%		56-1	45%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: FB-121516 Lab Sample ID:

JC33945-3

Matrix:

AQ - Field Blank Water SW846 8081B SW846 3510C

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Q

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	8G1414.D	1	12/21/16	CP	12/21/16	OP99350	G8G46

Run #2

Run #1

Run #2

Initial Volume

Final Volume

980 ml

10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	105%		26-13	2%
877-09-8	Tetrachloro-m-xylene	111%		26-13	2%
2051-24-3	Decachlorobiphenyl	43%		10-11	8%
2051-24-3	Decachlorobiphenyl	42%		10-11	8%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sample ID: EB-121516

Lab Sample ID:

JC33945-4 AQ - Equipment Blank

Matrix: Method:

SW846 8260C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

Run #1 Run #2

DF 4B67813.D 1

Analyzed 12/26/16

By HT **Prep Date** n/a

Prep Batch n/a

Analytical Batch V4B2787

Purge Volume

Run #1 Run #2 5.0 ml

File ID

Result

RL

MDL

Units Q

106-99-0

CAS No.

1,3-Butadiene

Compound

ND

5.0

0.17

ug/l

CAS No. **Surrogate Recoveries**

1868-53-7 Dibromofluoromethane 17060-07-0 1.2-Dichloroethane-D4 2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene Run#1

100% 100% 96% 109% Run# 2 Limits 76-120%

> 73-122% 84-119% 78-117%

ND = Not detected

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Report of Analysis

By

AN

12/22/16

Client Sample ID: EB-121516 Lab Sample ID: JC33945-4

File ID

P110168.D

Matrix:

Method: Project:

AQ - Equipment Blank SW846 8270D SW846 3510C

DF

1

BMSMC, Building 5 Area, PR

Analyzed

12/30/16

Date Sampled: 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

OP99421

Analytical Batch Prep Date Prep Batch

EP4892

Run #1 Run #2

> Final Volume **Initial Volume**

950 ml Run #1

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.3	0.86	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.94	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	ug/l	
51-28-5	2,4-Dinitrophenol	ND	11	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.3	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/l	
	3&4-Methylphenol	ND	2.1	0.93	ug/l	
88-75-5	2-Nitrophenol	ND	5.3	1.0	ug/l	
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.2	1.5	ug/l	
108-95-2	Phenol	ND	2.1	0.41	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.97	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.20	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l	
98-86-2	Acetophenone	ND	2.1	0.22	ug/l	
120-12-7	Anthracene	ND	1.1	0.22	ug/l	
1912-24-9	Atrazine	ND	2.1	0.47	ug/l	
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l	
92-52-4	1, 1'-Biphenyl	ND	1.1	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l	
106-47-8	4-Chloroaniline	ND	5.3	0.36	ug/l	
86-74-8	Carbazole	ND	1.1	0.24	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: EB-121516 Lab Sample ID: JC33945-4

Matrix: AQ - Equipment Blank Method: SW846 8270D SW846 3510C Project:

Percent Solids: n/a BMSMC, Building 5 Area, PR

Report of Analysis

Date Sampled: 12/15/16

Date Received: 12/17/16

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MÐL	Units
105-60-2	Caprolactam	ND	2.1	0.68	ug/l
218-01-9	Chrysene	ND	1.1	0.19	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.42	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.58	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.50	սք/1
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.53	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.1	0.52	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/l
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l
206-44-0	Fluoranthene	ND	1.1	0.18	սջ/1
86-73-7	Fluorene	ND	1.1	0.18	ug/l
118-74-1	Hexachlorobenzene	ND	1.1	0.34	ug/l
87-68-3	Hexachlorobutadiene	ND	1.1	0.52	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	2.9	ug/l
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l
78-59-1	Isophorone	ND	2.1	0.29	ug/l
90-12-0	1-Methy Inaphthalene	ND	1.1	0.28	ug/l
91-57-6	2-Methylnaphthalene	ND	1.1	0.22	ug/l
88-74-4	2-Nitroaniline	ND	5.3	0.29	ug/l
99-09-2	3-Nitroaniline	ND	5.3	0.41	ug/l
100-01-6	4-Nitroaniline	ND	5.3	0.46	ug/l
98-95-3	Nitrobenzene	ND	2.1	0.68	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.51	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.23	ug/l
85-01-8	Phenanthrene	ND	1.1	0.18	ug/1
129-00-0	Pyrene	ND	1.1	0.23	ug/ì
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	42%		14-8	8%
4165-62-2	Phenol-d5	27%		10-1	10%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: EB-121516 Lab Sample ID:

JC33945-4

Matrix:

AQ - Equipment Blank

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	93%		39-149%
4165-60-0	Nitrobenzene-d5	70%		32-128%
321-60-8	2-Fluorobiphenyl	78%		35-119%
1718-51-0	Terphenyl-d14	87%		10-126%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Report of Analysis

By

SG

12/23/16

Page 1 of 1

Client Sample ID: EB-121516 Lab Sample ID:

JC33945-4

Matrix: Method: AQ - Equipment Blank

1

SW846 8270D BY SIM SW846 3510C

Date Sampled: 12/15/16

Q

Date Received: 12/17/16

Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR

File ID DF Analyzed

Analytical Batch Prep Date Prep Batch 12/22/16 OP99421A E4M3174

Run #1 Run #2

Initial Volume Final Volume Run #1 950 mi 1.0 ml

4M69249.D

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.053	0.024	ug/l
50-32-8	Benzo(a)pyrene	ND	0.053	0.035	սք/1
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.046	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.035	ug/l
218-01-9	Chrysene	ND	0.11	0.027	սք/1
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.038	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.040	ug/l
91-20-3	Naphthalene	ND	0.11	0.031	ug/l
123-91-1	1,4-Dioxane	ND	0.11	0.051	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	58%		24-1	25%
321-60-8	2-Fluorobiphenyl	54%		19-1	27%
1718-51-0	Terphenyl-d14	52%	10-119%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

Analyzed

12/21/16

Prep Date

n/a

Analytical Batch

GGH5594

JC33945-4

Matrix:

AQ - Equipment Blank

Method: Project:

SW846-8015C (DAI)

DF

1

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

n/a

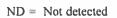
Q

Date Received: 12/17/16

Percent Solids: n/a

Prep Batch

Run #1 Run #2


Low Molecular Alcohol List

File ID

GH107887.D

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	100	55	սջ/1
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/i
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	102%		56-1	45%
111-27-3	Hexanol	94%		56-1	45%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

CP

Page 1 of 1

Client Sample ID: EB-121516 Lab Sample ID:

JC33945-4

AQ - Equipment Blank

DF

1

Date Sampled: 12/15/16 Date Received: 12/17/16

Matrix: Method:

SW846 8081B SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch Analytical Batch

Run #1

Run #2

Analyzed

12/21/16

12/21/16

Prep Date

OP99350

G8G46

Initial Volume 970 ml

File ID

8G1417.D

Final Volume

Run #1 Run #2

10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0062	ug/l
319-85-7	beta-BHC	ND	0.010	0.0059	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0029	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0048	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0064	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0052	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0053	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.021	0.0059	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	94%		26-1	32%
877-09-8	Tetrachloro-m-xylene	101%		26-13	32%
2051-24-3	Decachlorobiphenyl	32%		10-1	18%
2051-24-3	Decachlorobiphenyl	33%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Report of Analysis

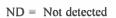
Page 1 of 1

Client Sample ID: TB-121516 RS Lab Sample ID: JC33945-5

Matrix: AQ - Trip Blank Water Method: SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16 Date Received: 12/17/16


Percent Solids: n/a

Analytical Batch Prep Batch File ID DF Analyzed By Prep Date GH107888.D 12/21/16 **XPL** n/a GGH5594 Run #1 1 n/a Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	սջ/Լ	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
111-27-3	Hexanol	94%		56-1	45%	
111-27-3	Hexanol	88%		56-1	45%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: EB121616

Lab Sample ID: JC33945-6

Matrix: Method: AQ - Equipment Blank

SW846 8260C Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16 Date Received: 12/17/16

Percent Solids: n/a

File ID DF Analyzed By **Prep Date Prep Batch Analytical Batch** 4B67812.D Run #1 1 12/26/16 HT V4B2787 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

CAS No. Compound RL **MDL** Units Q Result 106-99-0 1,3-Butadiene ND 5.0 0.17 ug/l

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

1868-53-7 Dibromofluoromethane 99% 76-120% 17060-07-0 1.2-Dichloroethane-D4 99% 73-122% 2037-26-5 Toluene-D8 96% 84-119% 460-00-4 4-Bromofluorobenzene 109% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: EB121616

Lab Sample ID: JC33945-6

Matrix:

AQ - Equipment Blank

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16 Date Received: 12/17/16

Percent Solids: n/a

File ID DF Analyzed By **Prep Date** Prep Batch **Analytical Batch** Run #1 6P33381.D 12/26/16 AC 12/23/16 OP99437 E6P1539 1

Run #2

Final Volume Initial Volume

Run #1 900 ml 1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Unit
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l
	3&4-Methylphenol	ND	2.2	0.98	ug/i
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	4.4	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.44	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.50	ug/l
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: EB121616 Lab Sample ID: JC33945-6

Matrix: AQ - Equipment Blank Method: SW846 8270D SW846 3510C Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16 Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.72	ug/l	
218-01-9	Chrysene	ND	1.1	0.20	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l	
H11-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1. I	0.53	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l	
53-70-3	Dibenzo(a, h)anthracene	ND	1.1	0.37	ug/l	
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/1	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	սք/1	
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l	
78-59-1	Isophorone	ND	2.2	0.31	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l	
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l	
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l	LECCHOO DE
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l	OF MUNICIPALITY
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	35
129-00-0	Pyrene	ND	1.1	0.24	ug/l	duel Infante
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l	Méndez
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	IC # 1888
367-12-4	2-Fluorophenol	47%		14-8	8%	CO LICE,
4165-62-2	Phenol-d5	32%			10%	110

Report of Analysis

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: EB121616

Lab Sample ID: JC33945-6

Matrix: AQ - Equipment Blank
Method: SW846 8270D SW846 3510C

Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16 **Date Received:** 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	78%		39-149%
4165-60-0	Nitrobenzene-d5	70%		32-128%
321-60-8	2-Fluorobiphenyl	69%		35-119%
1718-51-0	Terphenyl-d14	82%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID:	EB121616
I ah Sampla ID:	1033045-6

Matrix:

AQ - Equipment Blank Method: SW846 8270D BY SIM SW846 3510C

Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16

Date Received: 12/17/16 Percent Solids: n/a

Q

Analytical Batch File ID DF Analyzed By **Prep Date** Prep Batch Run #1 4P20503.D 12/29/16 SG 12/23/16 OP99437A E4P1117 1 Run #2

Initial Volume Final Volume

900 ml Run #1 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.056	0.025	ug/l
50-32-8	Benzo(a)pyrene	ND	0.056	0.037	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.048	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.037	ug/l
218-01-9	Chrysene	ND	0.11	0.029	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.040	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.042	ug/l
91-20-3	Naphthalene	ND	0.11	0.033	ug/l
123-91-1	1,4-Dioxane	ND	0.11	0.054	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	84%		24-1	25%
321-60-8	2-Fluorobiphenyl	54%		19-1	27%
1718-51-0	Terphenyl-d14	82%		10-1	19%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: EB121616

Lab Sample ID: JC33945-6

Matrix: Method: AQ - Equipment Blank

Project:

SW846-8015C (DAI) BMSMC, Building 5 Area, PR **Date Sampled:** 12/16/16

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107889.D	1	12/21/16	XPL	n/a	n/a	GGH5594
Run #2				125			

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
111-27-3	Hexanol	96%		56-1	45%	
111-27-3	Hexanol	89%		56-1	45%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID:	EB121616
Lab Sample ID:	JC33945-6

Matrix: AQ - Equipment Blank

SW846 8081B SW846 3510C Method:

Date Sampled: 12/16/16 Date Received: 12/17/16

Percent Solids: n/a

Q

Project: BMSMC, Building 5 Area, PR

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	8G1420.D	1	12/21/16	CP	12/21/16	OP99350	G8G46
Run #2							

1	Initial Volume	Final Volume
Run #1	900 ml	10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.011	0.0067	ug/l
319-84-6	alpha-BHC	ND	0.011	0.0067	ug/1
319-85-7	beta-BHC	ND	0.011	0.0063	ug/l
319-86-8	delta-BHC	ND	0.011	0.0051	ug/1
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0031	ug/I
5103-71-9	alpha-Chlordane	ND	0.011	0.0051	ug/i
5103-74-2	gamma-Chlordane	ND	0.011	0.0051	ug/l
60-57-1	Dieldrin	ND	0.011	0.0040	ug/l
72-54-8	4,4'-DDD	ND	0.011	0.0042	ug/l
72-55-9	4,4'-DDE	ND	0.011	0.0068	ug/l
50-29-3	4,4'-DDT	ND	0.011	0.0055	ug/l
72-20-8	Endrin	ND	0.011	0.0056	ug/l
1031-07-8	Endosulfan sulfate	ND	0.011	0.0058	ug/i
7421-93-4	Endrin aldehyde	ND	0.011	0.0057	ug/l
53494-70-5	Endrin ketone	ND	0.011	0.0056	սջ/1
959-98-8	Endosulfan-l	ND	0.011	0.0055	ug/i
33213-65-9	Endosulfan-II	ND	110.0	0.0048	ug/l
76-44-8	Heptachlor	ND	0.011	0.0042	ug/l
1024-57-3	Heptachlor epoxide	ND	0.011	0.0073	ug/i
72-43-5	Methoxychlor	ND	0.022	0.0063	ug/I
8001-35-2	Toxaphene	ND	0.28	0.20	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
877-09-8	Tetrachloro-m-xylene	100%		26-13	32%
877-09-8	Tetrachioro-m-xylene	105%		26-13	32%
2051-24-3	Decachlorobiphenyl	51%		10-1	18%
2051-24-3	Decachlorobiphenyl	53%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-13 Lab Sample ID:

JC33945-7

Matrix: Method: AQ - Ground Water

Project:

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4B67816.D	1	12/26/16	HT	n/a	n/a	V4B2787

Run #2

Purge Volume

Run #1

Run #2

CAS No.

Compound

5.0 ml

Result

RL

MDL

Units

Q

106-99-0

1,3-Butadiene

ND

5.0 0.17

Run# 2

ug/l

CAS No. **Surrogate Recoveries**

1868-53-7 Dibromofluoromethane 1,2-Dichloroethane-D4 17060-07-0 2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene Run# 1

100% 100% 97% 108%

76-120% 73-122% 84-119%

78-117%

Limits

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: MW-13 Lab Sample ID: JC33945-7

Matrix: Method:

AQ - Ground Water

SW846 8270D SW846 3510C

DF

1

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16 Date Received: 12/17/16

Percent Solids: n/a

Prep Batch

Run #1 Run #2

2P65606.D

File ID

Final Volume

Analyzed

12/22/16

By **Prep Date** SB 12/21/16

OP99387

Q

Analytical Batch E2P2873

Project:

Initial Volume

940 ml 1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.3	0.87	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.95	ug/l
120-83-2	2.4-Dichlorophenol	ND	2.1	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.3	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.94	ug/l
	3&4-Methylphenol	ND	2.1	0.94	ug/l
88-75-5	2-Nitrophenol	ND	5.3	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.3	1.5	ug/l
108-95-2	Phenol	ND	2.1	0.42	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.98	ug/l
83-32-9	Acenaphthene	ND	1.1	0.20	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l
98-86-2	Acetophenone	ND	2.1	0.22	ug/l
120-12-7	Anthracene	ND	1.1	0.22	ug/l
1912-24-9	Atrazine	ND	2.1	0.48	ug/l
100-52-7	Benzaldehyde	ND	5.3	0.31	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.49	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l
106-47-8	4-Chloroaniline	1.1	5.3	0.36	ug/l
86-74-8	Carbazole	ND	1.1	0.24	ug/l

fact Infant Méndez 1(# 1888

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method: SW846 8270D SW846 3510C

Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16 **Date Received:** 12/17/16

Percent Solids: n/a

Q

ĵ

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	1.2	2.1	0.69	ug/l
218-01-9	Chrysene	ND	1.1	0.19	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.30	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.43	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.59	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.51	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.54	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.1	0.53	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/1
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.8	ug/l
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l
86-73-7	Fluorene	ND	1.1	0.18	ug/l
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l
87-68-3	Hexachlorobutadiene	ND	1.1	0.52	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l
78-59-1	Isophorone	ND	2.1	0.29	ug/l
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l
91-57-6	2-Methylnaphthalene	ND	1.1	0.22	ug/l
88-74-4	2-Nitroaniline	ND	5.3	0.29	ug/l
99-09-2	3-Nitroaniline	ND	5.3	0.41	ug/l
100-01-6	4-Nitroaniline	ND	5.3	0.47	ug/l
98-95-3	Nitrobenzene	ND	2.1	0.68	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.51	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.24	ug/l
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l
129-00-0	Pyrene	ND	1.1	0.23	ug/l
95-94-3	1,2,4,5-Tetrachiorobenzene	ND	2.1	0.39	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
367-12-4	2-Fluorophenol	35%		14-88	8%
4165-62-2	Phenol-d5	24%		10-1	10%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-13

JC33945-7 Lab Sample ID: Matrix:

Method: Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16 Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	85%		39-149%
4165-60-0	Nitrobenzene-d5	64%		32-128%
321-60-8	2-Fluorobiphenyl	58%		35-119%
1718-51-0	Terphenyl-d14	50%		10-126%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-13 Lab Sample ID: JC33945-7

Matrix: Method: AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Date Sampled: 12/14/16

Date Received: 12/17/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

File ID DF $\mathbf{B}\mathbf{y}$ Prep Date **Prep Batch Analytical Batch** Analyzed Run #1 a 4M69224.D 12/22/16 SG 12/21/16 OP99387A E4M3173 1

Run #2

Final Volume Initial Volume Run #1 940 ml 1.0 ml

Run #2

Compound	Result	RL	MDL	Units	
Benzo(a)anthracene	ND	0.053	0.024	ug/l	
Benzo(a)pyrene	ND	0.053	0.035	ug/l	
Benzo(b)fluoranthene	ND	0.11	0.046	ug/l	
Benzo(k)fluoranthene	ND	0.11	0.035	ug/l	
Chrysene	ND	0.11	0.028	ug/l	
Dibenzo(a,h)anthracene	ND	0.11	0.039	ug/l	
Indeno(1,2,3-cd)pyrene	ND	0.11	0.040	ug/l	
Naphthalene	ND	0.11	0.031	ug/l	
1,4-Dioxane b	0.160	0.11	0.052	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Nitrobenzene-d5	64%		24-125%		
2-Fluorobiphenyl	53%		19-1	27%	
Terphenyl-d14	47%		10-1	19%	
	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Naphthalene 1,4-Dioxane b Surrogate Recoveries Nitrobenzene-d5 2-Fluorobiphenyl	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene ND Naphthalene 1,4-Dioxane b Surrogate Recoveries Run# 1 Nitrobenzene-d5 2-Fluorobiphenyl	Benzo(a)anthracene ND 0.053 Benzo(b)fluoranthene ND 0.11 Benzo(k)fluoranthene ND 0.11 Chrysene ND 0.11 Dibenzo(a,h)anthracene ND 0.11 Indeno(1,2,3-cd)pyrene ND 0.11 Naphthalene ND 0.11 1,4-Dioxane b 0.160 0.11 Surrogate Recoveries Run# 1 Run# 2 Nitrobenzene-d5 64% 2-Fluorobiphenyl 53%	Benzo(a)anthracene ND 0.053 0.024 Benzo(a)pyrene ND 0.053 0.035 Benzo(b)fluoranthene ND 0.11 0.046 Benzo(k)fluoranthene ND 0.11 0.035 Chrysene ND 0.11 0.028 Dibenzo(a,h)anthracene ND 0.11 0.039 Indeno(1,2,3-cd)pyrene ND 0.11 0.040 Naphthalene ND 0.11 0.031 1,4-Dioxane b 0.160 0.11 0.052 Surrogate Recoveries Run# 1 Run# 2 Lim Nitrobenzene-d5 64% 24-1 2-Fluorobiphenyl 53% 19-1	Benzo(a)anthracene ND 0.053 0.024 ug/l Benzo(a)pyrene ND 0.053 0.035 ug/l Benzo(b)fluoranthene ND 0.11 0.046 ug/l Benzo(k)fluoranthene ND 0.11 0.035 ug/l Chrysene ND 0.11 0.028 ug/l Dibenzo(a,h)anthracene ND 0.11 0.039 ug/l Indeno(1,2,3-cd)pyrene ND 0.11 0.040 ug/l Naphthalene ND 0.11 0.031 ug/l 1,4-Dioxane b 0.160 0.11 0.052 ug/l Surrogate Recoveries Run# 1 Run# 2 Limits Nitrobenzene-d5 64% 24-125% 2-Fluorobiphenyl 53% 19-127%

- (a) There is contamination in the field blank. There's no sample left to reextract for confirmation.
- (b) Compound also found in the field blank. There is no sample left to reextract for confirmation.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: MW-13 Lab Sample ID: JC33945-7

Matrix: Method:

AQ - Ground Water SW846-8015C (DAI)

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Date Received: 12/17/16

Percent Solids: n/a

				•			
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107890.D	1	12/21/16	XPL	n/a	n/a	GGH5594
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	91%		56-1	45%	
111-27-3	Hexanol	90%		56-1	45%	_
					10	209

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID: JC33945-8

Matrix:

AQ - Ground Water

Method:

File ID

4B67826.D

Project:

SW846 8260C

DF

BMSMC, Building 5 Area, PR

Date Sampled:

n/a

Q

12/14/16 Date Received: 12/17/16

V4B2787

Percent Solids: n/a

Analytical Batch Prep Date Prep Batch

Run #1 Run #2

Purge Volume

Run #1 Run #2

CAS No.

106-99-0

5.0 ml

Compound

1,3-Butadiene

Result

Analyzed

12/27/16

RL5.0

Run# 2

By

HT

MDL

n/a

Units

ND

0.17

ug/l

CAS No. **Surrogate Recoveries**

Dibromofluoromethane 1868-53-7 1,2-Dichloroethane-D4 17060-07-0 2037-26-5 Toluene-D8

4-Bromofluorobenzene 460-00-4

Run#1

101% 104% 96%

108%

Limits 76-120%

73-122% 84-119% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7 Lab Sample ID: JC33945-8

Matrix: AQ - Ground Water Method: SW846 8270D SW846 3510C

Project: BMSMC, Building 5 Area, PR **Date Sampled:** 12/14/16 Date Received: 12/17/16

Percent Solids: n/a

Q

File ID DF Analyzed $\mathbf{B}\mathbf{y}$ Prep Date Prep Batch **Analytical Batch** SB 12/21/16 OP99387 E2P2873 Run #1 2P65607.D 12/22/16 I

Run #2

Initial Volume Final Volume

980 ml 1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	սջ/1
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l
	3&4-Methylphenol	ND	2.0	0.90	ug/l
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	սք/1
120-12-7	Anthracene	ND	1.0	0.22	ug/l
1912-24-9	Atrazine	ND	2.0	0.46	ug/l
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.0	0.22	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

fael Infante Ménde/ IC # 18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7 Lab Sample ID: JC3394

Lab Sample ID: JC33945-8 Matrix: AQ - Groun

Method: Project: AQ - Ground Water SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16 **Date Received:** 12/17/16

Percent Solids: n/a

Q

J

ABN TCL Special List

ADIA I CE opecial Elst								
CAS No.	Compound	Result	RL	MDL	Units			
105-60-2	Caprolactam	0.96	2.0	0.66	ug/l			
218-01-9	Chrysene	ND	1.0	0.18	ug/l			
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l			
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l			
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l			
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l			
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l			
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l			
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l			
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l			
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l			
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/1			
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l			
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l			
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l			
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l			
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l			
86-73-7	Fluorene	ND	1.0	0.17	սջ/1			
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l			
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l			
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l			
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l			
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l			
78-59-1	Isophorone	ND	2.0	0.28	ug/l			
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l			
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l			
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l			
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l			
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l			
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/l			
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l			
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l			
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l			
129-00-0	Pyrene	ND	1.0	0.22	ug/l			
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
367-12-4	2-Fluorophenol	41%		14-8	8%			
4165-62-2	Phenol-d5	27%		10-1	10%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7

Lab Sample ID: JC33945-8

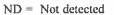
Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16


Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	100%		39-149%
4165-60-0	Nitrobenzene-d5	73%		32-128%
321-60-8	2-Fluorobiphenyl	68%		35-119%
1718-51-0	Terphenyl-d14	73%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID:

JC33945-8

Matrix: Method: Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Date Received: 12/17/16

Percent Solids: n/a

	_						
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	4M69225.D	1	12/22/16	SG	12/21/16	OP99387A	E4M3173
ln #0							

Run #2

	Initial Volume	Final Volume
Run #1	980 ml	1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthracene	ND	0.051	0.023	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.051	0.034	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.044	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.034	ug/l	
218-01-9	Chrysene	ND	0.10	0.027	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.037	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.039	ug/l	
91-20-3	Naphthalene	ND	0.10	0.030	ug/l	
123-91-1	1,4-Dioxane b	1.64	0.10	0.050	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	67%		24-1	25%	
321-60-8	2-Fluorobiphenyl	60%		19-1	27%	
1718-51-0	Terphenyl-d14	63%	10-119%			

- (a) There is contamination in the field blank. There's no sample left to reextract for confirmation.
- (b) Compound also found in the field blank. There is no sample left to reextract for confirmation.

ND = Not detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-7 JC33945-8

Lab Sample ID: Matrix:

AQ - Ground Water Method: SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16 Date Received: 12/17/16

Percent Solids: n/a


Project: File ID DF Analyzed By Prep Date

Analytical Batch Prep Batch Run #1 GGH5595 GH107898.D 12/22/16 XPL n/a n/a Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	սջ/1	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	92%		56-1	45%	
111-27-3	Hexanol	97%		56-1	45%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:

Lab Sample ID: JC33945-9

Matrix:

AQ - Ground Water

SW846 8260C

Method: Project:

BMSMC, Building 5 Area, PR

1

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

DF File ID Analyzed

S-42S

Prep Date Prep Batch **Analytical Batch**

V4B2787 n/a

Run #1 Run #2

Purge Volume

4B67825.D

Run #1 5.0 ml

Run #2

CAS No. Compound Result

12/27/16

RL

 $\mathbf{B}\mathbf{y}$

HT

MDL

0.17

n/a

Units Q

ug/l

106-99-0

1,3-Butadiene

ND

5.0

Limits

CAS No.

Surrogate Recoveries

1868-53-7 Dibromofluoromethane 17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8

4-Bromofluorobenzene 460-00-4

Run# 2 Run#1

99% 102% 96% 108%

76-120% 73-122% 84-119% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 3

Client Sample ID: S-42S Lab Sample ID: JC33945-9

Matrix: AQ - Ground Water Method: SW846 8270D SW846 3510C

Project: BMSMC, Building 5 Area, PR **Date Sampled:** 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

Q

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	P110169.D	1	12/30/16	AN	12/22/16	OP99421	EP4892
Run #2	P110201.D	100	01/03/17	RL	12/22/16	OP99421	EP4893

	Initial Volume	Final Volume	
Run #1	940 m!	1.0 ml	
Run #2	940 ml	1.0 ml	

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.3	0.87	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.95	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.4	ug/1
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.3	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.94	ug/l
	3&4-Methylphenol	ND	2.1	0.94	ug/l
88-75-5	2-Nitrophenol	ND	5.3	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.3	1.5	ug/i
108-95-2	Phenol	ND	2.1	0.42	ug/!
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/1
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.98	ug/l
83-32-9	Acenaphthene	ND	1.1	0.20	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l
98-86-2	Acetophenone	ND	2.1	0.22	ug/l
120-12-7	Anthracene	ND	1.1	0.22	ug/i
1912-24-9	Atrazine	ND	2.1	0.48	ug/i
100-52-7	Benzaldehyde	ND	5.3	0.31	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.49	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l
106-47-8	4-Chloroaniline	ND	5.3	0.36	ug/l
86-74-8	Carbazole	ND	1.1	0.24	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-42S Lab Sample ID: JC33945-9

Matrix: AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.1	0.69	ug/l
218-01-9	Chrysene	ND	1.1	0.19	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.30	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.43	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.59	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.51	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.54	ug/l
123-91-1	1,4-Dioxane	2530 a	110	70	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.1	0.53	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/l
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.8	ug/l
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l
86-73-7	Fluorene	ND	1.1	0.18	ug/l
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l
87-68-3	Hexachlorobutadiene	ND	1.1	0.52	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l
78-59-1	Isophorone	ND	2.1	0.29	ug/l
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l
91-57-6	2-Methylnaphthalene	ND	1.1	0.22	ug/l
88-74-4	2-Nitroaniline	ND	5.3	0.29	ug/l
99-09-2	3-Nitroaniline	ND	5.3	0.41	ug/l
100-01-6	4-Nitroaniline	ND	5.3	0.47	ug/l
98-95-3	Nitrobenzene	ND	2.1	0.68	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.51	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.24	ug/l
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l
129-00-0	Pyrene	ND	1.1	0.23	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
367-12-4	2-Fluorophenol	46%	0% b	14-88	3%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

fael Infants Méndez

Client Sample ID: S-42S Lab Sample ID:

JC33945-9

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR **Date Sampled:** 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	31%	0% b	10-110%
118-79-6	2,4,6-Tribromophenol	100%	0% b	39-149%
4165-60-0	Nitrobenzene-d5	77%	0% b	32-128%
321-60-8	2-Fluorobiphenyl	85%	0% b	35-119%
1718-51-0	Terphenyl-d14	71%	0% b	10-126%

(a) Result is from Run# 2

(b) Outside control limits due to dilution.

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: S-42S Lab Sample ID: JC33945-9

Matrix: AQ - Ground Water

Method: Project:

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

Q

File ID DF **Prep Date** Prep Batch **Analytical Batch** Analyzed By Run #1 4M69250.D 12/23/16 SG 12/22/16 OP99421A E4M3174 1

Run #2

Final Volume Initial Volume 940 ml 1.0 ml Run #1

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.053	0.024	ug/l
50-32-8	Benzo(a)pyrene	ND	0.053	0.035	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.046	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.035	ug/l
218-01-9	Chrysene	ND	0.11	0.028	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.039	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.040	ug/l
91-20-3	Naphthalene	ND	11.0	0.031	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	61%		24-1	25%
321-60-8	2-Fluorobiphenyl	57%		19-1	27%
1718-51-0	Terphenyl-d14	42%		10-1	19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

Prep Date

n/a

Page 1 of 1

Client Sample ID: S-42S

Lab Sample ID: JC33945-9

File ID

GH107901.D

Matrix:

AQ - Ground Water

Method: Project:

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

DF

Date Sampled: 12/15/16

n/a

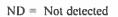
GGH5595

Date Received: 12/17/16

Percent Solids: n/a

Analytical Batch Prep Batch

Run #1 Run #2


Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	սջ/1	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/1	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	nits	
111-27-3	Hexanol	91%		56-1	45%	
111-27-3	Hexanol	84%		56-1	45%	

Analyzed

12/22/16

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-42S

Lab Sample ID: JC33945-9

Matrix:

AQ - Ground Water

Method:

RSK-175

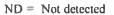
Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a


File ID DF By **Prep Date Analytical Batch** Analyzed Prep Batch Run #1 AA56493.D 20 12/21/16 LM GAA1098

Run #2

CAS No. **MDL** Compound Result RL Units Q

74-82-8 Methane 976 2.2 0.71 ug/l

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

JC33945-9

Matrix:

AQ - Ground Water

Method:

SW846 8081B SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

Analytical Batch File ID DF Analyzed By Prep Date Prep Batch Run #1 G8G46 8G1418.D 12/21/16 CP 12/21/16 OP99350

Run #2

Initial Volume

Final Volume

980 ml

10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-l	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	94%		26-13	32%
877-09-8	Tetrachloro-m-xylene	96%		26-13	32%
2051-24-3	Decachlorobiphenyl	47%		10-1	18%
2051-24-3	Decachlorobiphenyl	47%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-42S Lab Sample ID:

JC33945-9

Matrix:

AQ - Ground Water

Date Sampled: 12/15/16

Date Received: 12/17/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	5760 588	100 15	12 0.39					SW846 6010C ¹ SW846 6010C ²	SW846 3010A ³ SW846 3010A ³

(1) Instrument QC Batch: MA41038 (2) Instrument QC Batch: MA41045

(3) Prep QC Batch: MP97784

Client Sample ID: S-42S Lab Sample ID: JC33945-9

Matrix: AQ - Ground Water

Date Sampled: 12/15/16
Date Received: 12/17/16
Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	312	5.0	mg/l	1	12/23/16 19:45	СВ	SM2320 B-11
Iron, Ferric a	5.6	0.30	mg/l	1	12/26/16 17:37	GT	SM3500FE B-11
Iron, Ferrous b	0.21	0.20	mg/l	Ţ	12/19/16 22:45	HS	SM3500FE B-11
Nitrogen, Nitrate c	0.13	0.11	mg/l	1	01/02/17 10:57	YZ	EPA353, 2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	0.13	0.10	mg/l	1	01/02/17 10:57	YZ	EPA 353 2/LACHAT
Nitrogen, Nitrite d	< 0.010	0.010	mg/l	1	12/17/16 17:29	YR	SM4500NO2 B-11
Sulfate	< 10	10	mg/l	1	01/06/17 03:20	CD	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	I	12/20/16 11:29	JA	SM4500S2- F-I1

- (a) Calculated as: (Iron) (Iron, Ferrous)
- (b) Field analysis required. Received out of hold time and analyzed by request.
- (c) Calculated as: (Nitrogen, Nitrate + Nitrite) (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time.
- (d) Received and analyzed out of holding time.

Report of Analysis

Page 1 of 1

Client Sample ID: S-42D Lab Sample ID:

JC33945-10

Matrix:

Project:

AQ - Ground Water

Method:

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16

Percent Solids: n/a

By **Analytical Batch** File ID Prep Date Prep Batch DF Analyzed Run #1 4B67823.D 12/27/16 HT n/a V4B2787 1 n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

460-00-4

CAS No. Compound Result

RL **MDL**

5.0

Run# 2

Units

Q

106-99-0 1,3-Butadiene ND

Run# 1

0.17

ug/l

CAS No. Surrogate Recoveries

1868-53-7 Dibromofluoromethane 1.2-Dichloroethane-D4 17060-07-0 2037-26-5 Toluene-D8

4-Bromofluorobenzene

100% 102% 96% 108% 76-120% 73-122% 84-119%

78-117%

Limits

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-42D

Lab Sample ID: JC33945-10

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Q

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	P110170.D	1	12/30/16	AN	12/22/16	OP99421	EP4892
Run #2	P110202.D	50	01/03/17	RL	12/22/16	OP99421	EP4893

	Initial Volume	Final Volume
Run #1	930 ml	1.0 ml
Run #2	930 ml	1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.4	0.88	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	0.96	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.4	2,6	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.4	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.95	ug/l
	3&4-Methylphenol	ND	2.2	0.95	ug/l
88-75-5	2-Nitrophenol	ND	5.4	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.3	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.42	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.4	0.99	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2,2	0.22	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.48	ug/l
100-52-7	Benzaldehyde	ND	5.4	0.31	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	սք/1
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	սք/1
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.43	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.49	ug/l
92-52-4	1, I'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.25	ug/l
106-47-8	4-Chloroaniline	ND	5.4	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-42D

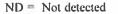
Lab Sample ID: JC33945-10

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C


BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16 Date Received: 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q Q
105-60-2	Caprolactam	ND	2,2	0.70	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.30	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	50
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.43	սը/1	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.39	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.59	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.51	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.55	ug/l	
123-91-1	1,4-Dioxane	1560 a	54	35	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.53	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.23	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	6.6	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/1	
67-72-1	Hexachloroethane	ND	2.2	0.42	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	นg/1	
88-74-4	2-Nitroaniline	ND	5.4	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	0.42	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.47	ug/l	-001480
98-95-3	Nitrobenzene	ND	2.2	0.69	ug/l	36
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.52	ug/l	3
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.24	ug/l	fuel Infan
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	Méndez
129-00-0	Pyrene	ND	1.1	0.24	ug/l	IC # 188
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.40	ug/l	13
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	MICO LICEN

367-12-4

MDL = Method Detection Limit

40%

0% b

2-Fluorophenol

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: S-42D Lab Sample ID:

JC33945-10

AQ - Ground Water

Date Sampled: 12/15/16 Date Received: 12/17/16

Matrix: Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	27%	0% b	10-110%
118-79-6	2,4,6-Tribromophenol	95%	0% b	39-149%
4165-60-0	Nitrobenzene-d5	64%	0% b	32-128%
321-60-8	2-Fluorobiphenyl	72%	0% b	35-119%
1718-51-0	Terphenyl-d14	69%	0% b	10-126%

(a) Result is from Run# 2

(b) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: S-42D Lab Sample ID:

JC33945-10

Matrix: Method:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Date Received: 12/17/16

Q

Date Sampled: 12/15/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** 4M69251.D 12/23/16 12/22/16 OP99421A E4M3174 Run #1 1 SG

Run #2

Initial Volume Final Volume Run #1 930 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.054	0.025	ug/i
50-32-8	Benzo(a)pyrene	ND	0.054	0.036	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.047	ug/i
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.036	ug/l
218-01-9	Chrysene	ND	0.11	0.028	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.039	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.041	ug/i
91-20-3	Naphthalene	ND	0.11	0.032	ug/i
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	53%		24-1	25%
321-60-8	2-Fluorobiphenyl	50%		19-1	27%
1718-51-0	Terphenyl-d14	43%	10-1199		19%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: S-42D

Lab Sample ID: JC33945-10

Matrix:

AQ - Ground Water

Method:

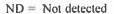
SW846-8015C (DAI)

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Date Received: 12/17/16


Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107905.D	1	12/22/16	XPL	n/a	n/a	GGH5595
Run #2							

Low Molecular Alcohol List

Compound	Result	RL	MDL	Units	Q
Ethanol	ND	100	55	ug/l	
Isobutyl Alcohol	ND	100	36	սջ/1	
Isopropyl Alcohol	ND	100	68	ug/l	
	ND	100	43	ug/l	
	ND	100	87	-	
•	ND	100	66	ug/l	
Methanol	ND	200	71	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Hexanol	77%		56-1	45%	
Hexanol	68%		56-1	45%	1
	Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol Surrogate Recoveries Hexanol	Ethanol ND Isobutyl Alcohol ND Isopropyl Alcohol ND n-Propyl Alcohol ND n-Butyl Alcohol ND sec-Butyl Alcohol ND Methanol ND Surrogate Recoveries Run# 1 Hexanol 77%	Ethanol ND 100 Isobutyl Alcohol ND 100 Isopropyl Alcohol ND 100 n-Propyl Alcohol ND 100 n-Butyl Alcohol ND 100 sec-Butyl Alcohol ND 100 Methanol ND 200 Surrogate Recoveries Run# 1 Run# 2 Hexanol 77%	Ethanol ND 100 55 Isobutyl Alcohol ND 100 36 Isopropyl Alcohol ND 100 68 n-Propyl Alcohol ND 100 43 n-Butyl Alcohol ND 100 87 sec-Butyl Alcohol ND 100 66 Methanol ND 200 71 Surrogate Recoveries Run# 1 Run# 2 Lim Hexanol 77% 56-1	Ethanol ND 100 55 ug/l Isobutyl Alcohol ND 100 36 ug/l Isopropyl Alcohol ND 100 68 ug/l n-Propyl Alcohol ND 100 43 ug/l n-Butyl Alcohol ND 100 87 ug/l sec-Butyl Alcohol ND 100 66 ug/l Methanol ND 200 71 ug/l Surrogate Recoveries Run#1 Run#2 Limits Hexanol 77% 56-145%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-42D

Lab Sample ID: JC33945-10

Matrix: Method: AQ - Ground Water

SW846 8081B SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/15/16

Q

Date Received: 12/17/16

Percent Solids: n/a

Analytical Batch File ID DF Analyzed By **Prep Date** Prep Batch CP 12/21/16 OP99350 G8G46 Run #1 8G1419.D 12/21/16 1

Run #2

Initial Volume Final Volume

970 ml

10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0062	ug/l
319-85-7	beta-BHC	ND	0.010	0.0059	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0029	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0048	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0064	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/i
72-20-8	Endrin	ND	0.010	0.0052	ug/i
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0053	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/i
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ս <u>բ</u> /1
72-43-5	Methoxychlor	ND	0.021	0.0059	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	100%		26-13	32%
877-09-8	Tetrachloro-m-xylene	104%		26-13	32%
2051-24-3	Decachlorobiphenyl	71%		10-1	18%
2051-24-3	Decachlorobiphenyl	71%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

SGS Accutest

Report of Analysis

Client Sample ID: TB121516 NR Lab Sample ID: JC33945-11

Matrix: AQ - Trip Blank Water Method: SW846-8015C (DAI)

Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16 **Date Received:** 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107877.D	1	12/21/16	XPL	n/a	n/a	GGH5594
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	սց/1	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	113%		56-1	45%	
111-27-3	Hexanol	103%		56-1	45%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

HT

Page 1 of 1

Client Sample ID: MW-22S Lab Sample ID:

JC33945-12

AQ - Ground Water SW846 8260C

DF

1

Date Sampled: 12/14/16 Date Received: 12/17/16

Percent Solids: n/a

Method: Project:

Matrix:

BMSMC, Building 5 Area, PR

Analytical Batch Prep Batch

V4B2787

Run #1 Run #2

Purge Volume

4B67824.D

Run #1

5.0 ml

File ID

Run #2

Result

MDL

n/a

Prep Date

Units

Q

n/a

CAS No. 106-99-0

460-00-4

Compound 1,3-Butadiene

ND

Run# 1

Analyzed

12/27/16

5.0

Run# 2

RL

0.17

ug/l

CAS No. **Surrogate Recoveries**

1868-53-7 Dibromofluoromethane 1,2-Dichloroethane-D4 17060-07-0 2037-26-5 Toluene-D8

4-Bromofluorobenzene

100% 103% 97% 109%

76-120% 73-122% 84-119%

78-117%

Limits

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: MW-22S

JC33945-12

Lab Sample ID:

AQ - Ground Water

Matrix: Method:

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	2P65608.D	1	12/22/16	SB	12/21/16	OP99387	E2P2873
Run #2 a	P110171.D	1	12/30/16	AN	12/22/16	OP99421	EP4892

	Initial Volume	Final Volume	
Run #1	910 ml	1.0 ml	
Run #2	180 ml	1.0 ml	

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.5	0.90	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.5	0.98	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.5	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.5	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.98	ug/l
	3&4-Methylphenol	ND	2.2	0.97	ug/l
88-75-5	2-Nitrophenol	ND	5.5	1.1	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	սք/l
87-86-5	Pentachlorophenol	ND	4.4	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.43	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.5	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.5	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.5	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	սք/ն
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.49	ug/l
100-52-7	Benzaldehyde	ND	5.5	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	սջ/ն
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.50	սք/1
92-52-4	1,1'-Biphenyl	ND	1.1	0.23	սք/1
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	սք/1
106-47-8	4-Chloroaniline	ND	5.5	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-22S Lab Sample ID: JC33945-12

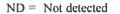
Matrix:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

Project:


BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16 **Date Received:** 12/17/16

Percent Solids: n/a

ABN TCL Special List

	•				
CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.2	0.71	սይ/l
218-01-9	Chrysene	ND	1.1	0.19	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.52	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/1
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l
132-64-9	Dibenzofuran	ND	5.5	0.24	ug/l
84-74-2	Di-n-butyl phthalate	ND	2,2	0.55	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	29.8	2,2	1.8	ug/l
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l
86-73-7	Fluorene	ND	1.1	0.19	ug/l
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l
87-68-3	Hexachlorobutadiene	ND	1.1	0.54	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/l
78-59-1	Isophorone	ND	2.2	0.30	ug/l
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l
88-74-4	2-Nitroaniline	ND	5.5	0.30	ug/l
99-09-2	3-Nitroaniline	ND	5.5	0.43	ug/l
100-01-6	4-Nitroaniline	ND	5.5	0.48	ug/l
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.5	0.24	ug/i
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l
129-00-0	Pyrene	ND	1.1	0.24	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l
JJ-J 1" J	1,2,4,0-1011 acitio (Obctizenc	110	des + dim	0.41	~ 6 / •
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	40%	34%	14-8	88%
4165-62-2	Phenol-d5	27%	23%		10%

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW-22S Lab Sample ID: JC33945-12

Matrix:

AQ - Ground Water

Method:

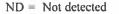
SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Date Received: 12/17/16


Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	89%	79%	39-149%
4165-60-0	Nitrobenzene-d5	67%	58%	32-128%
321-60-8	2-Fluorobiphenyl	64%	64%	35-119%
1718-51-0	Terphenyl-d14	65%	84%	10-126%

(a) Confirmation run.

RL = Reporting Limit

E = Indicates value exceeds calibration range

MDL = Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

SG

Page 1 of 1

Client Sample ID: MW-22S Lab Sample ID: JC33945-12

File ID

910 ml

4M69226.D

Matrix:

AQ - Ground Water

DF

i

Date Sampled: 12/14/16

Method:

SW846 8270D BY SIM SW846 3510C

Analyzed

12/22/16

Date Received: 12/17/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

Run #1

Prep Date 12/21/16

Prep Batch **Analytical Batch** OP99387A E4M3173

Run #2

Final Volume Initial Volume

Run #1

1.0 ml

CAS No.	Compound	Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthracene	ND	0.055	0.025	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.055	0.037	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.048	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.036	ug/l	
218-01-9	Chrysene	ND	0.11	0.029	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.040	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.042	ug/l	
91-20-3	Naphthalene	ND	0.11	0.032	ug/l	
123-91-1	1,4-Dioxane	ND	0.11	0.054	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	64%		24-1	25%	
321-60-8	2-Fluorobiphenyl	56%		19-1	27%	
1718-51-0	Terphenyl-d14	57%		10-1	19%	190

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

fael Infant Méndez IC # 1888

Report of Analysis

Page 1 of 1

Client Sample ID: MW-22S

Lab Sample ID: JC33945-12

Matrix: Method:

Project:

AQ - Ground Water

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107878.D	1	12/21/16	XPL	n/a	n/a	GGH5594
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	104%		56-1	45%	
111-27-3	Hexanol	97%		56-1	45%	

ND Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-22S Lab Sample ID:

JC33945-12

Matrix:

AQ - Ground Water

Method: Project:

RSK-175

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Q

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	AA56487.D	1	12/21/16	LM	n/a	n/a	GAA1098
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	
74-82-8	Methane	6.1	0.11	0.036	ug/l	

ND Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-22S Lab Sample ID: JC33945-12

Matrix: Method: AQ - Ground Water

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Q

Date Received: 12/17/16

Percent Solids: n/a

Project: File ID Analyzed

Run #1 Run #2 DF 12/21/16 1

By CP **Prep Date Prep Batch** 12/21/16 OP99350

Analytical Batch

G8G46

Initial Volume

900 ml

8G1405.D

Final Volume 10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.011	0.0067	ug/l
319-84-6	alpha-BHC	ND	0.011	0.0067	ug/l
319-85-7	beta-BHC	ND	0.011	0.0063	ug/l
319-86-8	delta-BHC	ND	0.011	0.0051	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0031	ug/l
5103-71-9	alpha-Chlordane	ND	0.011	0.0051	ug/l
5103-74-2	gamma-Chlordane	ND	0.011	0.0051	ug/l
60-57-1	Dieldrin	ND	0.011	0.0040	ug/l
72-54-8	4,4'-DDD	ND	0.011	0.0042	ug/l
72-55-9	4,4'-DDE	ND	0.011	0.0068	ug/l
50-29-3	4,4'-DDT	ND	0.011	0.0055	ug/l
72-20-8	Endrin	ND	0.011	0.0056	ug/l
1031-07-8	Endosulfan sulfate	ND	0.011	0.0058	ug/l
7421-93-4	Endrin aldehyde	ND	0.011	0.0057	ug/i
53494-70-5	Endrin ketone	ND	0.011	0.0056	ug/l
959-98-8	Endosulfan-I	ND	0.011	0.0055	ug/l
33213-65-9	Endosulfan-II	ND	0.011	0.0048	ug/l
76-44-8	Heptachlor	ND	0.011	0.0042	ug/l
1024-57-3	Heptachlor epoxide	ND	0.011	0.0073	ug/l
72-43-5	Methoxychlor	ND	0.022	0.0063	ug/l
8001-35-2	Toxaphene	ND	0.28	0.20	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	75%		26-13	32%
877-09-8	Tetrachloro-m-xylene	80%		26-13	32%
2051-24-3	Decachlorobiphenyl	60%		10-1	18%
2051-24-3	Decachlorobiphenyl	61%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-22S Lab Sample ID:

JC33945-12

Matrix:

AQ - Ground Water

Date Sampled: 12/14/16 Date Received: 12/17/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron Manganese	165 2400	100 15	12 0.39	ug/l ug/l				SW846 6010C ¹ SW846 6010C ¹	

(1) Instrument QC Batch: MA41036 (2) Prep QC Batch: MP97784

Report of Analysis

Page 1 of 1

Client Sample ID: MW-22S Lab Sample ID:

JC33945-12

Matrix:

AQ - Ground Water

Date Sampled: 12/14/16

Percent Solids: n/a

Date Received: 12/17/16

Project:

BMSMC, Building 5 Area, PR

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Alkalinity, Total as CaCO3	186	5.0	mg/l	1	12/23/16 18:45		SM2320 B-11
Iron, Ferric a	< 0.30	0.30	mg/l	1	12/23/16 22:37	ND	SM3500FE B-11
Iron, Ferrous b	< 0.20	0.20	mg/l	1	12/19/16 22:45	HS	SM3500FE B-11
Nitrogen, Nitrate c	< 0.11	0.11	mg/l	1	01/02/17 11:13	YZ	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	01/02/17 11:13	YZ	EPA 353.2/LACHAT
Nitrogen, Nitrite d	< 0.010	0.010	mg/l	1	12/17/16 17:29	YR	SM4500NO2 B-11
Sulfate	< 10	10	mg/l	1	01/06/17 03:46	CD	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	12/19/16	CB	SM4500S2- F-11

(a) Calculated as: (Iron) - (Iron, Ferrous)

(b) Field analysis required. Received out of hold time and analyzed by request.

(c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite) Nitrogen, Nitrite analysis done past holding time.

(d) Sample received outside the holding time.

Page 1 of 1

Report of Analysis

Client Sample ID: FB121416

Lab Sample ID:

JC33945-13

Matrix:

AO - Field Blank Water

Method:

SW846 8260C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Date Received: 12/17/16

Percent Solids: n/a

File ID Prep Batch **Analytical Batch** DF Analyzed By **Prep Date** Run #1 4B67811.D 12/26/16 HT V4B2787 1 n/a n/a

Run #2

Purge Volume

Run #1

Run #2

CAS No.

Compound

5.0 ml

Result

Run#1

RL

MDL

Units

Q

106-99-0

1868-53-7

17060-07-0

1,3-Butadiene

Dibromofluoromethane 1,2-Dichloroethane-D4

ND

5.0 0.17

Run# 2

ug/I

CAS No. **Surrogate Recoveries**

99% 99%

76-120% 73-122% 84-119%

Limits

Toluene-D8 2037-26-5 460-00-4 4-Bromofluorobenzene 96% 109%

78-117%

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 3

Client Sample ID: FB121416

Lab Sample ID: JC33945-13

Matrix:

AQ - Field Blank Water

Method:

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Q

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	2P65609.D	1	12/22/16	SB	12/21/16	OP99387	E2P2873

Run #2

Initial Volume Final Volume

890 ml

1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.6	0.92	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	1.0	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.5	ug/l
95-48-7	2-Methylphenol	ND	2.2	1.0	ug/l
	3&4-Methylphenol	ND	2.2	0.99	ug/l
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	4.5	1.6	ug/l
108-95-2	Phenol	ND	2.2	0.44	սք/1
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	սք/1
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.24	ug/l
1912-24-9	Atrazine	ND	2.2	0.50	ug/l
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l
92-52-4	1, 1'-Biphenyl	ND	1.1	0.24	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.27	ug/l
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l
86-74-8	Carbazole	ND	1.1	0.26	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 12/14/16

Date Received: 12/17/16

Report of Analysis

Client Sample ID: FB121416 Lab Sample ID: JC33945-13

Matrix: AQ - Field Blank Water
Method: SW846 8270D SW846 3510C
Project: BMSMC, Building 5 Area, PR

SW846 8270D SW846 3510C Percent Solids: n/a BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q	
105-60-2	Caprolactam	ND	2.2	0.73	ug/l		
218-01-9	Chrysene	ND	1.1	0.20	ug/l		
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l		
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l		
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	սց/1		
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l		
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.62	ug/l		
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l		
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.57	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l		
32-64-9	Dibenzofuran	ND	5.6	0.25	ug/l		
84-74-2	Di-n-butyl phthalate	ND	2.2	0.56	սց/1		
17-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l		
34-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l		
31-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l		
17-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.9	ug/l		
06-44-0	Fluoranthene	ND	1.1	0.19	ug/l		
6-73-7	Fluorene	ND	1.1	0.19	ug/l		
18-74-1	Hexachlorobenzene	ND	1.1	0.37	ug/l		
7-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l		
7-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l		
7-72-1	Hexachloroethane	ND	2.2	0.44	ug/l		
93-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l		
3-59-1	Isophorone	ND	2.2	0.31	ug/l		
0-12-0	1-Methylnaphthalene	ND	1.1	0.30	ug/l		
-12-0 -57-6	2-Methylnaphthalene	ND	1.1	0.24	ug/l		
-37-6 1-74-4	2-Nitroaniline	ND	5.6	0.31	ug/1 ug/1		
9-09-2	3-Nitroaniline	ND	5.6	0.31	ug/l		
9-09-2 00-01-6	4-Nitroaniline	ND	5.6	0.49	ug/1 ug/1	55	-
8-95-3	Nitrobenzene	ND	2.2	0.49	ug/l	(1)	Ŋ
		ND	2.2	0.72		300	
21-64-7	N-Nitroso-di-n-propylamine	-			ug/1	3	
6-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l		du
35-01-8	Phenanthrene	ND	1.1	0.20	ug/1	A48.0	М
129-00-0	Pyrene	ND	1.1	0.25	ug/l	101	K
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.42	ug/l	1/1/10	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	THE	,0 r
367-12-4	2-Fluorophenol	42%		14-8	8%		
1165 - 62 - 2	Phenol-d5	28%			10%		
100-02-2	r nenot-us	2070		10-1	1070		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method: Project:

Report of Analysis

Client Sample ID: FB121416 Lab Sample ID: JC33945-13 Matrix: AQ - Field B

AQ - Field Blank Water SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16 **Date Received:** 12/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	85%		39-149%
4165-60-0	Nitrobenzene-d5	65%		32-128%
321-60-8	2-Fluorobiphenyl	62%		35-119%
1718-51-0	Terphenyl-d14	79%		10-126%

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

SG

Page 1 of 1

Client Sample ID: FB121416 Lab Sample ID:

JC33945-13 AQ - Field Blank Water **Date Sampled:** 12/14/16 Date Received: 12/17/16

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

12/22/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Q

Run #1 Run #2

File ID DF Analyzed

Prep Date Prep Batch 12/21/16

Analytical Batch OP99387A E4M3173

Initial Volume 890 ml

4M69227.D

Final Volume 1.0 ml

Run #1 Run #2

CAS No.	Compound	Result	RL	MDL	Units
56-55-3	Benzo(a)anthracene	ND	0.056	0.026	ug/l
50-32-8	Benzo(a)pyrene	ND	0.056	0.037	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.11	0.049	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.11	0.037	ug/l
218-01-9	Chrysene	ND	0.11	0.029	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.11	0.041	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.11	0.043	ug/l
91-20-3	Naphthalene	ND	0.11	0.033	ug/l
123-91-1	1,4-Dioxane	ND	0.11	0.055	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	62%		24-1	25%
321-60-8	2-Fluorobiphenyl	54%		19-1	27%
1718-51-0	Terphenyl-d14	76%		10-1	19%

ND = Not detected RL = Reporting Limit MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB121416

Lab Sample ID: JC33945-13

Matrix: Method:

Project:

AQ - Field Blank Water SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Q

Date Received: 12/17/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	GH107879.D	I	12/21/16	XPL	n/a	n/a	GGH5594

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	100	55	սջ/1
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	114%		56-1	45%
111-27-3	Hexanol	96%		56-1	45%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

CP

RL

12/21/16

MDL

Units

Q

Page 1 of 1

Client Sample ID: FB121416 Lab Sample ID:

JC33945-13

Matrix:

AQ - Field Blank Water

DF

1

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/14/16

Date Received: 12/17/16

G8G46

Percent Solids: n/a

OP99350

Prep Date Prep Batch Analytical Batch

Run #1 Run #2

Run #1

Run #2

CAS No.

Initial Volume

Compound

File ID

8G1406.D

Final Volume

Analyzed

12/21/16

Result

1000 ml

10.0 ml

Pesticide TCL List

	-				
309-00-2	Aldrin	ND	0.010	0.0060	սջ/1
319-84-6	alpha-BHC	ND	0.010	0.0060	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0046	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0050	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0051	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0065	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.18	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
877-09-8	Tetrachloro-m-xylene	92%		26-13	32%
877-09-8	Tetrachloro-m-xylene	98%		26-13	32%
2051-24-3	Decachlorobiphenyl	46%		10-1	
2051-24-3	Decachlorobiphenyl	47%		10-1	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-31R (2) Lab Sample ID:

JC33945-14

AQ - Ground Water SW846 8260C

Date Sampled: 12/16/16 Date Received: 12/17/16 Percent Solids: n/a

Method: Project:

Matrix:

BMSMC, Building 5 Area, PR

File ID Run #1 4B67800.D

DF 1

By Analyzed 12/26/16 HT

Prep Date n/a

Prep Batch n/a

Analytical Batch V4B2787

Run #2

Purge Volume 5.0 ml

Compound

Run #1 Run #2

Result

RL MDL

Units

Q

CAS No. 106-99-0

1,3-Butadiene

ND

5.0

0.17

ug/l

CAS No. **Surrogate Recoveries**

1868-53-7 Dibromofluoromethane 1,2-Dichloroethane-D4 17060-07-0

2037-26-5 Toluene-D8 460-00-4 4-Bromofluorobenzene

Run# 2 Run# 1

100% 102% 97%

101%

Limits

76-120% 73-122% 84-119% 78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

Page 1 of 3

Client Sample ID: S-31R (2) Lab Sample ID:

JC33945-14

Matrix:

AQ - Ground Water

DF

1

1

Date Received: 12/17/16

Date Sampled: 12/16/16

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch

Q

Analytical Batch

Run #1 Run #2 a

6P33395.D P110215.D

File ID

Analyzed 12/26/16 01/04/17

AC 12/23/16 01/03/17 IJ

Prep Date

OP99437 OP99633

E6P1539 EP4894

Initial Volume

1000 ml

Final Volume 1.0 ml

Run #1 1.0 ml Run #2 890 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Unit
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	18.4	5.0	2.4	ug/i
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	սջ/I
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/i
98-86-2	Acetophenone	6.9	2.0	0.21	ug/l
120-12-7	Anthracene	3.9	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	2.0	5.0	0.29	սք/1
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/i
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1, l'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/i
86-74-8	Carbazole	ND	1.0	0.23	ug/i

fael Infant Méndez 1(# 188

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

J

Report of Analysis

Client Sample ID: S-31R (2) Lab Sample ID: JC33945-14

Matrix: AQ - Ground Water
Method: SW846 8270D SW846 3

Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16 **Date Received:** 12/17/16

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.0	0.65	ug/l
218-01-9	Chrysene	ND	1.0	0.18	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l
123-91-1	1,4-Dioxane	22.0	1.0	0.66	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l
86-73-7	Fluorene	ND	1.0	0.17	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l
78-59-1	Isophorone	ND	2.0	0.28	ug/l
90-12-0	I-Methylnaphthalene	ND	1.0	0.26	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/i
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	սք/1
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	սք/1
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l
129-00-0	Pyrene	ND	1.0	0.22	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its

ND = Not detected

367-12-4

etected MDL = Method Detection Limit

13% b

37%

RL = Reporting Limit

E = Indicates value exceeds calibration range

2-Fluorophenol

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

Client Sample ID: S-31R (2) Lab Sample ID:

JC33945-14 AQ - Ground Water **Date Sampled:** 12/16/16 Date Received: 12/17/16

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Report of Analysis

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	27%	33%	10-110%
118-79-6	2,4,6-Tribromophenol	81%	86%	39-149%
4165-60-0	Nitrobenzene-d5	73%	75%	32-128%
321-60-8	2-Fluorobiphenyl	74%	83%	35-119%
1718-51-0	Terphenyl-d14	59%	66%	10-126%

- (a) Confirmation run.
- (b) Outside of in house control limits.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-31R (2) Lab Sample ID: JC33945-14

Matrix: Method: AO - Ground Water

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16

Q

Date Received: 12/17/16

Percent Solids: n/a

Prep Date Prep Batch **Analytical Batch** File ID DF Analyzed By 12/24/16 SG 12/23/16 OP99437A E4P1111 Run #1 4P20424.D i.

Run #2

Project:

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

RL MDL Units CAS No. Compound Result 56-55-3 Benzo(a)anthracene ND 0.050 0.023ug/l 0.050 0.033 50-32-8 Benzo(a)pyrene ND ug/l ND 0.043 205-99-2 Benzo(b)fluoranthene 0.10 ug/l 207-08-9 Benzo(k)fluoranthene ND 0.10 0.033 սց/| 218-01-9 Chrysene ND 0.10 0.026 ug/l 53-70-3 Dibenzo(a,h)anthracene ND 0.10 0.036 ug/l 193-39-5 Indeno(1,2,3-cd)pyrene ND 0.10 0.038 ug/l 91-20-3 Naphthalene ND 0.10 0.029 ug/l CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 77% 24-125% 321-60-8 2-Fluorobiphenyl 54% 19-127% Terphenyl-d14 56% 10-119% 1718-51-0

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: S-31R (2) Lab Sample ID: JC33945-1

Matrix:

JC33945-14 AQ - Ground Water

Method: Project: SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16 **Date Received:** 12/17/16

Percent Solids: n/a

	Ell. ID	DE	A 1 3	D.,	Davis Davis	Davis Datab	A 14:1 D-4-1-
	File ID	DF	Analyzed	ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107874.D	1	12/21/16	XPL	n/a	n/a	GGH5594

Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	սջ/1	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	սջ/[
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	94%		56-1	45%	
111-27-3	Hexanol	90%		56-1	45%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

CP

12/21/16

Page 1 of 1

Client Sample ID: S-31R (2) Lab Sample ID: JC33945-14

File ID

900 ml

8G1401.D

Matrix:

AQ - Ground Water

DF

ŀ

Date Sampled: 12/16/16 Date Received: 12/17/16

Method:

SW846 8081B SW846 3510C

Analyzed

12/21/16

Percent Solids: n/a

OP99350

Q

Project: BMSMC, Building 5 Area, PR

Prep Date Prep Batch **Analytical Batch**

G8G46

Run #1 Run #2

> Initial Volume Final Volume

Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.011	0.0067	ug/l
319-84-6	alpha-BHC	ND	0.011	0.0067	ug/l
319-85-7	beta-BHC	ND	0.011	0.0063	ug/l
319-86-8	delta-BHC	ND	0.011	0.0051	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.011	0.0031	ug/l
5103-71-9	alpha-Chlordane	ND	0.011	0.0051	ug/l
5103-74-2	gamma-Chlordane	ND	0.011	0.0051	ug/l
60-57-1	Dieldrin	ND	0.011	0.0040	ug/l
72-54-8	4,4'-DDD	ND	0.011	0.0042	ug/l
72-55-9	4,4'-DDE	ND	0.011	0.0068	ug/l
50-29-3	4,4'-DDT	ND	0.011	0.0055	ug/l
72-20-8	Endrin	ND	0.011	0.0056	սք/1
1031-07-8	Endosulfan sulfate	ND	0.011	0.0058	ug/l
7421-93-4	Endrin aldehyde	ND	0.011	0.0057	ug/l
53494-70-5	Endrin ketone	ND	0.011	0.0056	ug/l
959-98-8	Endosulfan-I	ND	0.011	0.0055	ug/l
33213-65-9	Endosulfan-II	ND	0.011	0.0048	ug/l
76-44-8	Heptachlor	ND	0.011	0.0042	ug/l
1024-57-3	Heptachlor epoxide	ND	0.011	0.0073	ug/l
72-43-5	Methoxychlor	ND	0.022	0.0063	ug/l
8001-35-2	Toxaphene	ND	0.28	0.20	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	70%	26-132%		

ND = Not detected

877-09-8

2051-24-3

2051-24-3

MDL = Method Detection Limit

82%

51%

58%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Tetrachloro-m-xylene

Decachlorobiphenyl

Decachlorobiphenyl

J = Indicates an estimated value

26-132%

10-118%

10-118%

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: TB121616 NRA Lab Sample ID: JC33945-15

Matrix: Method: AQ - Trip Blank Water

SW846 8260C

BMSMC, Building 5 Area, PR Project:

Date Sampled: 12/16/16

Date Received: 12/17/16

Percent Solids: n/a

Analytical Batch Prep Date Prep Batch File ID DF Analyzed By 4B67810.D 12/26/16 HT n/a V4B2787 Run #1 1 n/a

Run #2

Purge Volume 5.0 ml

Run #1 Run #2

Result RL MDL Units Q CAS No. Compound

5.0 106-99-0 1,3-Butadiene ND 0.17 ug/l

Run# 2 CAS No. **Surrogate Recoveries** Run# 1 Limits 76-120% 1868-53-7 Dibromofluoromethane 99% 1,2-Dichloroethane-D4 99% 73-122% 17060-07-0 97% 84-119% 2037-26-5 Toluene-D8 78-117%

460-00-4 4-Bromofluorobenzene 108%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TB121616 NRA Lab Sample ID: JC33945-15

Matrix:

AQ - Trip Blank Water SW846-8015C (DAI)

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/16/16 Date Received: 12/17/16

Percent Solids: n/a

Q

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH107883.D	1	12/21/16	XPL	n/a	n/a	GGH5594

Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
6 1 1 T 5	F3.1 1	ND	100	25	
64-17-5	Ethanol	ND	100	55	սք/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	100%		56-1	45%
111-27-3	Hexanol	96%		56-1	45%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33945

Account:

AMANYWP Anderson, Mulholland & Associates

BMSMC, Building 5 Area, PR Project:

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
JC33945-14MS	4B67802.D	1	12/26/16	HT	n/a	n/a	V4B2787
JC33945-14MSD	4B67803.D	1	12/26/16	HT	n/a	n/a	V4B2787
JC33945-14	4B67800.D	1	12/26/16	HT	n/a	n/a	V4B2787
3033743-14	4007000.0	•	12/20/10		117 65		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The QC reported here applies to the following samples:

Method: SW846 8260C

JC33945-1, JC33945-2, JC33945-3, JC33945-4, JC33945-6, JC33945-7, JC33945-8, JC33945-9, JC33945-10, JC33945-10 12, JC33945-13, JC33945-14, JC33945-15

CAS No.	Compound	JC33945-14 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
106-99-0	1,3-Butadiene	ND	50	43.9	88	50	37.2	74	17	10-167/20
CAS No.	Surrogate Recoveries	MS	MSD	JC3:	3945-14	Limits				
1868-53-7	Dibromofluoromethane	101%	100%	100%	6	76-120%				
17060-07-0	1,2-Dichloroethane-D4	100%	97%	1029	6	73-122%	ř			
2037-26-5	Toluene-D8	99%	98%	97%		84-119%				
460-00-4	4-Bromofluorobenzene	103%	104%	1019	6	78-117%				

^{* =} Outside of Control Limits.

Page 1 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33945

Account:

AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP99437-MS	6P33396.D	1	12/26/16	AC	12/23/16	OP99437	E6P1539
OP99437-MSD	6P33397.D	1	12/26/16	AC	12/23/16	OP99437	E6P1539
JC33945-14	6P33395.D	1	12/26/16	AC	12/23/16	OP99437	E6P1539

The QC reported here applies to the following samples:

Method: SW846 8270D

JC33945-6, JC33945-14

CAS No.	Compound	JC33945 ug/l	5-14 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
95-57-8	2-Chlorophenol	ND		51	32.2	63	51	35.1	69	9	49-110/20
59-50-7	4-Chloro-3-methyl phenol	ND		51	38.6	76	51	43.0	84	11	44-121/18
120-83-2	2,4-Dichlorophenol	ND		51	36.7	72	51	41.1	81	11	42-120/19
105-67-9	2,4-Dimethylphenol	18.4		51	54.9	72	51	63.6	89	15	33-132/23
51-28-5	2,4-Dinitrophenol	ND		102	70.7	69	102	84.7	83	18	21-145/26
534-52-1	4.6-Dinitro-o-cresol	ND		51	38.0	74	51	45.1	88	17	25-134/27
95-48-7	2-Methylphenol	ND		51	34.8	68	51	37.9	74	9	47-112/18
75-40-7	3&4-Methylphenol	ND		51	34.6	68	51	37.3	73	8	44-113/19
88-75-5	2-Nitrophenol	ND		51	34.6	68	51	40.1	79	15	45-118/20
100-02-7	4-Nitrophenol	ND		51	35.4	69	51	35.0	69	1	23-144/28
87-86-5	Pentachlorophenol	ND		51	43.0	84	51	47.0	92	9	25-151/25
108-95-2	Phenol	ND		51	21.3	42	51	22.9	45	7	22-100/22
58-90-2	2,3,4,6-Tetrachlorophenol	ND		51	36.8	72	51	39.6	78	7	44-122/21
95-95-4	2,4,5-Trichlorophenol	ND		51	37.1	73	51	41.4	81	11	51-124/20
88-06-2	2,4,6-Trichlorophenol	ND		51	38.9	76	51	43.2	85	10	53-120/21
83-32-9	Acenaphthene	ND		51	34.3	67	51	38.3	75	11	52-120/23
208-96-8	Acenaphthylene	ND		51	34.2	67	51	38.4	75	12 .	50-101/22
98-86-2	Acetophenone	6.9		51	39.4	64	51	45.4	75	14	31-141/23
120-12-7	Anthracene	3.9		51	41.2	73	51	44.8	80	8	54-117/22
1912-24-9	Atrazine	ND		51	39.7	78	51	43.5	85	9	42-152/23
100-52-7	Benzaldehyde	2.0	J	51	32.7	60	51	36.2	67	10	10-164/30
56-55-3	Benzo(a)anthracene	ND		51	38.6	76	51	41.7	82	8	40-123/24
50-33-3	Benzo(a)pyrene	ND		51	38.1	75	51	40.8	80	7	41-127/25
205-99-2	Benzo(b)fluoranthene	ND		51	38.7	76	51	39.6	78	2	39-127/27
191-24-2	Benzo(g,h,i)perylene	ND		51	38.2	75	51	40.6	80	6	34-128/28
207-08-9	Benzo(k)fluoranthene	ND		51	37.4	73	51	41.6	82	11	39-122/26
101-55-3	4-Bromophenyl phenyl ether	ND		51	36.2	71	51	40.3	79	11	51-124/23
85-68-7	Butyl benzyl phthalate	ND		51	38.8	76	51	43.6	85	12	21-146/28
92-52-4	1,1'-Biphenyl	ND		51	36.3	71	51	39.7	78	9	27-142/23
91-58-7	2-Chloronaphthalene	ND		51	32.0	63	51	34.9	68	9	51-109/23
106-47-8	4-Chloroaniline	ND		51	35.2	69	51	35.8	70	2	10-110/55
86-74-8	Carbazole	ND		51	39.9	78	51	42.8	84	7	52-116/22
105-60-2	Caprolactam	ND		51	12.4	24	51	12.2	24	2	10-106/34
218-01-9	Chrysene	ND		51	39.2	77	51	42.7	-84-	9	41-128/24
111-91-1	bis(2-Chloroethoxy)methane	ND		51	33.0	65	51	37.5	DCMDO!	13	46-120/24
111-44-4	bis(2-Chloroethyl)ether	ND		51	33.5	66	51	350	74		42-123/28
				- *			- 4	1.3.		121	

^{* =} Outside of Control Limits.

Page 2 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33945

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

	33396.D	1	12/26/16	AC			E6P1539
OP99437-MSD 6P3	33397.D	1	12/26/16	AC	12/23/16	OP99437	E6P1539
JC33945-14 6P3	33395.D	1	12/26/16	AC	12/23/16	OP99437	E6P1539

The QC reported here applies to the following samples:

Method: SW846 8270D

JC33945-6, JC33945-14

CACN	C1	JC33945-14		MS	MS	Spike	MSD	MSD %	RPD	Limits Rec/RPD
CAS No.	Compound	ug/I Q	ug/l	ug/l	%	ug/l	ug/l	70	KPD	Rec/RPD
108-60-1	bis(2-Chloroisopropyl)ether	ND	51	28.4	56	51	30.8	60	8	41-117/25
7005-72-3	4-Chlorophenyl phenyl ether	ND	51	35.3	69	51	38.6	76	9	48-121/21
121-14-2	2,4-Dinitrotoluene	ND	51	39.5	77	51	43.2	85	9	54-123/27
606-20-2	2,6-Dinitrotoluene	ND	51	38.9	76	51	43.2	85	10	55-125/26
91-94-1	3,3'-Dichlorobenzidine	ND	102	45.8	45	102	47.6	47	4	10-107/47
123-91-1	1,4-Dioxane	22.0	51	43.8	43	51	45.9	47	5	10-119/31
53-70-3	Dibenzo(a,h)anthracene	ND	51	38.0	74	51	40.6	80	7	35-130/27
132-64-9	Dibenzofuran	ND	51	37.3	73	51	41.6	82	11	53-112/22
84-74-2	Di-n-butyl phthalate	ND	51	39.8	78	51	43.0	84	8	38-129/23
117-84-0	Di-n-octyl phthalate	ND	51	39.5	77	51	42.8	84	8	35-145/26
84-66-2	Diethyl phthalate	ND	51	37.6	74	51	41.3	81	9	16-136/30
131-11-3	Dimethyl phthalate	ND	51	36.2	71	51	41.1	81	13	10-143/39
117-81-7	bis(2-Ethylhexyl)phthalate	ND	51	39.9	78	51	44.2	87	10	34-141/28
206-44-0	Fluoranthene	ND	51	39.0	76	51	41.6	82	6	47-123/24
86-73-7	Fluorene	ND	51	36.6	72	51	39.5	77	8	56-117/22
118-74-1	Hexachlorobenzene	ND	51	37.1	73	51	39.9	78	7	46-125/24
87-68-3	Hexachlorobutadiene	ND	51	23.4	46	51	27.5	54	16	26-121/24
77-47-4	Hexachlorocyclopentadiene	ND	102	21.0	21	102	19.1	19	9	10-133/31
67-72-1	Hexachloroethane	ND	51	21.7	43	51	24.3	48	11	35-111/26
193-39-5	Indeno(1,2,3-cd)pyrene	ND	51	38.4	75	51	40.7	80	6	32-130/30
78-59-1	Isophorone	ND	51	33.9	66	51	39.1	77	14	47-126/23
90-12-0	1-Methylnaphthalene	ND	51	32.0	63	51	35.3	69	10	34-124/25
91-57-6	2-Methylnaphthalene	ND	51	33.5	66	51	38.3	75	13	34-123/24
88-74-4	2-Nitroaniline	ND	51	39.9	78	51	44.5	87	11	46-137/23
99-09-2	3-Nitroaniline	ND	51	30.8	60	51	31.2	61	-1	10-110/50
100-01-6	4-Nitroaniline	ND	51	37.2	73	51	40.2	79	8	38-118/25
98-95-3	Nitrobenzene	ND	51	32.6	64	51	37.8	74	15	35-130/25
621-64-7	N-Nitroso-di-n-propylamine	ND	51	32.3	63	51	36.9	72	13	45-123/22
86-30-6	N-Nitrosodiphenylamine	ND	51	36.2	71	51	40.6	80	11	46-123/24
85-01-8	Phenanthrene	ND	51	38.1	75	51	41.8	82	9	48-121/23
129-00-0	Pyrene	ND	51	42.3	83	51	47.1	92	11	43-124/26
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	51	32.5	64	51	35.7	70	9	25-142/24

Page 3 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33945

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
6P33396.D	1	12/26/16	AC	12/23/16	OP99437	E6P1539
6P33397.D	1	12/26/16	AC	12/23/16	OP99437	E6P1539
6P33395.D	1	12/26/16	AC	12/23/16	OP99437	E6P1539
01 33393.17	1	12/20/10	AC	12/23/10	01 77437	1307 1337
ĺ	5P33396.D 5P33397.D	6P33396.D 1 6P33397.D 1	5P33396.D 1 12/26/16 5P33397.D 1 12/26/16	6P33396.D 1 12/26/16 AC 6P33397.D 1 12/26/16 AC	5P33396.D 1 12/26/16 AC 12/23/16 5P33397.D 1 12/26/16 AC 12/23/16	6P33396.D 1 12/26/16 AC 12/23/16 OP99437 6P33397.D 1 12/26/16 AC 12/23/16 OP99437

The QC reported here applies to the following samples:

Method: SW846 8270D

JC33945-6, JC33945-14

CAS No.	Surrogate Recoveries	MS	MSD	JC33945-14	Limits
367-12-4	2-Fluorophenol	27%	24%	13%* a	14-88%
4165-62-2	Phenol-d5	40%	43%	27%	10-110%
118-79-6	2,4,6-Tribromophenol	82%	94%	81%	39-149%
4165-60-0	Nitrobenzene-d5	68%	78%	73%	32-128%
321-60-8	2-Fluorobiphenyl	72%	80%	74%	35-119%
1718-51-0	Terphenyl-d14	77%	87%	59%	10-126%

(a) Outside of in house control limits.

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33945

Account:

AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
P57484.D	Ţ	12/23/16	IJ	12/23/16	OP99437A	E3P2668
P57485.D	I	12/23/16	JJ	12/23/16	OP99437A	E3P2668
P20424.D	t	12/24/16	SG	12/23/16	OP99437A	E4P1111
	P57484.D P57485.D	P57484.D I P57485.D I	P57484.D I 12/23/16 P57485.D I 12/23/16	P57484.D I 12/23/16 JJ P57485.D I 12/23/16 JJ	P57484.D I 12/23/16 JJ 12/23/16 P57485.D I 12/23/16 JJ 12/23/16	P57484.D I 12/23/16 JJ 12/23/16 OP99437A P57485.D I 12/23/16 JJ 12/23/16 OP99437A

The QC reported here applies to the following samples:


Method: SW846 8270D BY SIM

Page 1 of I

JC33945-6, JC33945-14

		JC33945-1	4 Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/I Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
56-55-3	Benzo(a)anthracene	ND	1.02	0.885	87	1.02	0.926	91	5	25-135/33
50-32-8	Benzo(a)pyrene	ND	1.02	0.521	51	1.02	0.490	48	6	10-116/38
205-99-2	Benzo(b)fluoranthene	ND	1.02	0.607	59	1.02	0.589	58	3	10-131/40
207-08-9	Benzo(k)fluoranthene	ND	1.02	0.544	53	1.02	0.510	50	6	10-120/45
218-01-9	Chrysene	ND	1.02	0.715	70	1.02	0.749	73	5	31-125/33
53-70-3	Dibenzo(a,h)anthracene	ND	1.02	0.475	47	1.02	0.353	35	29	10-116/48
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.02	0.499	49	1.02	0.374	37	29	10-116/48
91-20-3	Naphthalene	ND	1.02	0.518	51	1.02	0.574	56	10	23-140/36
123-91-1	1,4-Dioxane	17.6 E	1.02	8.43	0* a	1.02	7.50	0* a	12	20-160/30

CAS No.	Surrogate Recoveries	MS	MSD	JC33945-14	Limits
367-12-4	2-Fluorophenol	21%	17%		14-81%
4165-62-2	Phenol-d5	25%	23%		11-54%
118-79-6	2,4,6-Tribromophenol	68%	78%		35-145%
4165-60-0	Nitrobenzene-d5	46%	49%	77%	24-125%
321-60-8	2-Fluorobiphenyl	44%	46%	54%	19-127%
1718-51-0	Terphenyl-d14	47%	46%	56%	10-119%

Page 1 of 1

Method: SW846-8015C (DAI)

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33945

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

Sample JC33945-14MS JC33945-14MSD JC33945-14	File ID GH107875.D GH107876.D GH107874.D	DF I I	Analyzed 12/21/16 12/21/16 12/21/16	By XPL XPL XPL	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch GGH5594 GGH5594 GGH5594

The QC reported here applies to the following samples:

JC33945-1, JC33945-2, JC33945-3, JC33945-4, JC33945-5, JC33945-6, JC33945-7, JC33945-11, JC33945-12, JC33945-13, JC33945-14, JC33945-15

CAS No.	Compound	JC33945-14 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
64-17-5	Ethanol	ND	5000	4640	93	5000	5150	103	10	58-145/27
78-83-1	Isobutyl Alcohol	ND	5000	5180	104	5000	5660	113	9	69-131/25
67-63-0	Isopropyl Alcohol	ND	5000	5320	106	5000	5160	103	3	70-133/28
71-23-8	n-Propyl Alcohol	ND	5000	4760	95	5000	5580	112	16	66-137/29
71-36-3	n-Butyl Alcohol	ND	5000	5500	110	5000	6030	121	9	63-131/25
78-92-2	sec-Butyl Alcohol	ND	5000	5980	120	5000	6510	130	8	64-136/25
67-56-1	Methanol	ND	5000	5300	106	5000	4580	92	15	48-148/34
CAS No.	Surrogate Recoveries	MS	MSD	JC3	33945-14	Limits				
111-27-3	Hexanol	112%	110%	949	6	56-1459	6			
111-27-3	Hexanol	101%	106%	90%	6	56-1459	6			

^{* =} Outside of Control Limits.

Page I of 1

Method: SW846 8081B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC33945

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
8G1402.D	1	12/21/16	CP	12/21/16	OP99350	G8G46
8G1403.D	1	12/21/16	CP	12/21/16	OP99350	G8G46
8G1401.D	1	12/21/16	CP	12/21/16	OP99350	G8G46
	8G1402.D 8G1403.D	8G1402.D 1 8G1403.D 1	8G1402.D 1 12/21/16 8G1403.D 1 12/21/16	8G1402.D 1 12/21/16 CP 8G1403.D 1 12/21/16 CP	8G1402.D 1 12/21/16 CP 12/21/16 8G1403.D 1 12/21/16 CP 12/21/16	8G1402.D 1 12/21/16 CP 12/21/16 OP99350 8G1403.D 1 12/21/16 CP 12/21/16 OP99350

The QC reported here applies to the following samples:

JC33945-1, JC33945-2, JC33945-3, JC33945-4, JC33945-6, JC33945-9, JC33945-10, JC33945-12, JC33945-13, JC33945-14

CAS No.	Compound	JC33945-14 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/I	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	•	_	-	_			_			08.150/10
309-00-2	Aldrin	ND	0.555	0.45	81	0.555	0.43	77	5	37-159/40
319-84-6	alpha-BHC	ND	0.555	0.48	86	0.555	0.47	85	2	37-164/37
319-85-7	beta-BHC	ND	0.555	0.53	95	0.555	0.53	95	0	46-151/36
319-86-8	delta-BHC	ND	0.555	0.56	101	0.555	0.56	101	0	32-168/36
58-89-9	gamma-BHC (Lindane)	ND	0.555	0.52	94	0.555	0.51	92	2	44-160/37
5103-71-9	alpha-Chlordane	ND	0.555	0.58	104	0.555	0.56	101	4	38-160/35
5103-74-2	gamma-Chlordane	ND	0.555	0.57	106	0.555	0.55	99	4	39-157/37
60-57-1	Dieldrin	ND	0.555	0.58	104	0.555	0.55	99	5	42-161/36
72-54-8	4,4'-DDD	ND	0.555	0.58	104	0.555	0.55	99	5	40-161/36
72-55-9	4,4'-DDE	ND	0.555	0.53	95	0.555	0.50	90	6	34-158/36
50-29-3	4,4'-DDT	ND	0.555	0.54	97	0.555	0.50	90	8	41-173/33
72-20-8	Endrin	ND	0.555	0.63	113	0.555	0.60	108	5	44-166/35
1031-07-8	Endosulfan sulfate	ND	0.555	0.58	104	0.555	0.56	101	4	46-161/36
7421-93-4	Endrin aldehyde	ND	0.555	0.58	104	0.555	0.59	106	2	34-149/36
53494-70-5	Endrin ketone	ND	0.555	0.60	108	0.555	0.58	104	3	44-157/36
959-98-8	Endosulfan-I	ND	0.555	0.56	101	0.555	0.55	99	2	43-154/35
33213-65-9	Endosulfan-II	ND	0.555	0.59	106	0.555	0.58	104	2	40-162/35
76-44-8	Heptachior	ND	0.555	0.48	86	0.555	0.46	83	4	33-153/37
1024-57-3	Heptachlor epoxide	ND	0.555	0.55	99	0.555	0.54	97	2	45-154/37
72-43-5	Methoxychlor	ND	0.555	0.60	108	0.555	0.59	106	2	48-169/32
8001-35-2	Toxaphene	ND		ND			ND		nc	50-150/30
	-									
CAS No	Surrogata Decoveries	MS	MSD	JC	33945_14	Limits				

CAS No.	Surrogate Recoveries	MS	MSD	JC33945-14	Limits
877-09-8	Tetrachloro-m-xylene	67%	71%	70%	26-132%
877-09-8	Tetrachloro-m-xylene	68%	76%	82%	26-132%
2051-24-3	Decachlorobiphenyl	90%	84%	51%	10-118%
2051-24-3	Decachlorobiphenyl	84%	83%	58%	10-118%

^{*} Outside of Control Limits.

SGS ACCUTEST	NJ	6 P.	o B B C C C C C C C C C C C C C C C C C	2235 TEL 732-3	SGS Ac Route 13	cutest - I	Dayton on, NJ 08	6 10		ľ			1634	ירל.	7 7	; 24	7 2	6 12 25	1	PA One Car				: 2 9
SEVELET Client / Reporting triformation	SENS NO.	reference share a			WWW.	ACCIMEN.	com	-												91		5 c 3		45
	MERCADORISI	Project Name	Project Name							ar Car	Web	7.79	1984	Rec	Liesto	d Am	iyele:	900	EST	CODE	sheet)	4	C.	Matrix Codes
Company Nerve		.,														1		1	본	1			- 1.	
Anderson Mulholland & Associates Street Address		41h Q 2016 (Groundwater Sa	mpling - Or	nalte We	its_	00.00						_	1	İ	1	Ì		BSM41123PYR,		1	1 1	- [DW - Driving Wale GW - Ground Wale
2700 Westchester Avenue, Suite 417					Billion	informati	on (If diff		ner B	annel la				1					ΙΞ		ξ		1	WW≟Water SW+Surface Wate
City State	Zip	Cay		State	Сатра	ry Name			DVIII PC	mpon i no			1		l	1		1 3	2		18	1		SC - Soil SL- Slutge
Purchase NY Proed Contect	10577 E-mar	Humacao Proect #		PR	(Street A								4		l	1		I+BAPYRN, SM+BKFLUAN	E		NOTE BELOW	l i		SED-Sedment Of - Od
Terry Taylor	C-1100	Project			2 hami v	derari									1	l	8	P W	M		9			LIQ - Other Liquid AIR - Air
Pricing 8	Fax if	Clent Purchase	Order 8		City			84	Stay		Z	ф	-		1		1 8	BSIM+BAPYRN, M. BSIM+BKFLL	BSIM+DBANTH,		(SEE		- 1	SOL - Other Sold WP - Wipe
914-251-0400 Sarpers Names	Phone #	S												١.		×	82	858 N. E.	88	E .	E		١.	FB-Field Blank B-Egypment Blan
the state of terminals.	Prigns &	Project Manage Terry Taylor			Altertion	n.							1	ĮŽ	l	À	(<u>a</u>	NTH, BS	HRYS, I	14	15		- 1-	RB- Rinse Black TB-Top Black
		Terry Taylor		Collection		1	_		N. Tra	of trees	rved (b)	وجانف	- 4	1 2	SL	3	3	BAN	A CHR	38	CHEMISTRY			143-1480 SPRIN
Field 50 / Point of Collection				200]		Π.	I,	5	3 ,	ğ	DB015LMA	PIDAIPESTTCL	AB8278SL	B0276SUA14DIOX	BMS+MNAP, BMS+2MNAP	BSIM+BANTH, BSIM+BBFLUA	1	VE26013BUTADN			ı	
		MECHOD Value	Dave	Time	by	Alleby	4 of bottom	5 3	Ĕ	ş 9	2 3	1 2	ä	2	A B	8	1 2	8 8	BSW	3	WET			LAB USE ONLY
1 5-455			12/15/16	1225	J.D.	6W	20	2	1	17			-	-	-		-	_	-	-		\Box		E(08
2 5-430			12/15/16	1440	78	GW	10	6	П	4	П	Π	مسا	-	-		-		-	-				V868
3 FB-121516			12/15/16	1507	ID	FB	10	6	П	4			-	~			~	-	-	1			_	AJE
4 FB -12/5/6			12-15-16	1927	RS	Eθ	10	Z	П	4			X	4	54	7	又	X	×		\vdash	\vdash	\dashv	CYY
5 TB-121516 R	2		12-15-16	144n		TB	2	2	П			11	ĺχ	1	· 🗸	K	اد	X	1	X			\pm	V869
6 EB 1216 16			17-16-16	1022	RC	EG		6	1	4	Ť	+	X	1	5	V	V		\	6	$\vdash\vdash$	_	- -	E66
7 MW-13			12-14-11	1154	S	- 7	1.5	6	Н	4	-	++	V	×		$\overline{\mathbf{v}}$	1	X	30		\vdash			MII
Q MW-7			12-H-10	1341	-	GW		6	Н	2	+	╁╍╂╾	1		6	\leftarrow		1			 		+	
TS121416-RS	-70.0		10 11/4	17/1	777	178	7	-		- 674	+	╂	10	1.00	÷		X	E			\vdash		+	EZ4
The state of the s	120	10	16-14			龙			H	===	Ŧ		+			-		~	Z	×		\rightarrow	+	-
-	De	E-YA					12-	7		- -	- -	₩	₩	_			_		_	\sqcup		-	+	
					-			-	Н	- -	+	₩	├	Ш			_		_	\sqcup			_	
3-5-73 Turnarduna Tirne (Business cays)		NAMES OF LOTTE	SCHOOL SALES	marithus a state of	to an exercise				Щ	Informa	\perp	Щ								لــــــــــــــــــــــــــــــــــــــ		\rightarrow		
			Annahret PMS / Date:			Commerc	tel "A" (Li	_	a		-	IP Cate		NATE OF THE PARTY	74 . 377 85					Special			CM 471	5CH4, XNO30,
Shil. 18 Business Days							ы "B" (L			_	HYA	IF Cates	-		504,	AND S		nvac		PHEN	AF La,	mis, stra	JPC 112	IGNA, ANDSU,
3 Day RUSH	•	-				PULLTI (Li Raduc	Lavel 3+4	1		$\overline{}$		Forms Format												
2 Day RUSH						Commerci				_	Other		_	-				INI	TIAL.	ASES	SMEN	<u>п 34</u>	D	تامر
1 Day RUSH	- 1						of Known													ERIFI			<u>a</u>	
Emergency & Rush T.A data avacable VA Labor	na dia						Results On Jules + QC						ummany									-	2	-
PARTY CONTRACTOR CONTRACTOR	3	Sir	mple Custody mu	st be docum	ented be	low sact	time sa	mples (chen	On bor	en encic	on, Inch	ading co	Durier o	samp feliven	A- NG 1UA	елкогу	IS VO		прои г		in the L	abora	atory
All Victory	12-16-	16 100	1 Fed	EX				Radonque T	thead (ly:	40				7	Jone The		45	Rospino	40y: em	=			
Reimposhed by Samptor:	Date Time:		Received By:			_		d Lebrara			<u>- 1/</u>					Z / /		73	2		-21	7 2 .4	/ 3	0 / 0
Retinguished by:	Date Time:		Second By:					4										[4	**** 3	7.2	2 2 2	17	7,1.7
5			9					642	-	644		ä	Articol Mot trises		-	四人	apple si	ring .		٤,	C)	1. 2,8	eler Ton	- P

JC33945: Chain of Custody Page 1 of 4

SGS ACCUTEST NJ			CHA	SG5 / S Route 329-020	Acrutesi - 130, Day 5 FAX,	Dayton ton, NJ (732/329	1010		7		710	ex trace 779	77:	327	26	/2	Воще	Order Ca	NOTES OF	2	_O	F <u>Z</u>
Client / Reporting Information	£300075	Mary Control	9 Proje	WW.	A Jacouries	Leom							0446	_				ار اوسایستا	-	3	(3)	3945
Company Name	Project Name		A PTDJ8	er mitoli	namon -	Sec. 6	Trick	100	Carlo	A TOWN	4 64	B# Re	quest	d App	yale	580	E514	CODE	shoot	77910	GD.	Matrix Codes
Anderson Rulholland & Associates	4th Q 2016	Groundwater 5															1	T				Martin Cooks
	Street	Citotalonaler 3	niiibenii - C	Insile Vi	fells.	- Paris	no law	-			4	1		1 1		1	740					DW - Drewing Wat GW - Ground Wat
2700 Westchester Avenue, Suite 417 City State 2.0	City			Ballion	g beformas	len i si dir	larent fr	non Aus	nort to a	- and	4	1	1			1	=		5		- 1	WW - Water
Purchase NY 1077	Humaçao		Siam PR	Compa	any Name				3071 (2)		-		1	ll		3	35	1	BELOW		- 1	SW - Burface Water SO - See
Emai	Protect #		PR	Steet	Address						╛					M+BAPYRN, BSIM+BKFLUAN	BSIM·DBANTH, BSIM·1123PYR,		18		- 1	SL- Sludge SED-Sediment
Terry Taylor Prone #															9	2 2	氢		CHEMISTRY (SEE NOTE			DI-DI LIQ - Other Liquid
914-251-0400	Chent Purchas	a Order s		Cay		_	54	Pho	_	Že.	-			1	3	2 1	8	1	2			AR - Ar SOL - Dener Solid
Sarroler(s) Name(s) Prione #	Project Manag			-							1			ايا	9,7	38 88	i i	_	(\$6		ŀ	WP - Wipe FB-Field Blank
	Terry Taylor			Attentio	NT.						7	ಕ		90	3	H.B	E	ğ	TR		ļ,	EB-Equipment (Blain
tes			Cohecton		_		T 6	Larrier o	-	nd Barton	4	Es	ا پر ا	3	¥.		HRYS.	É	MIS			RB-Rinse Black TB-Trip Blank
Field ID / Point of Collection		1		Samuel	.]		Π.	1_1,	LI	1 2	DS0152.IKA	P8081PESTTCL	Ë	8	÷	4 5	5 ±	Ę	뽒		L	
9 5-415	MECHANISM APPLE	Dem	1 Texa	by	Many	of the Street,	밀활	Perch Perch	Q á	A 10	1 8	780	ABLITOSL	B&270SIM14DIOX	BMS+UNAP, BMS+2KHAP	BSM+Banth, Bsm+bapyrn, Bsim+bbfluan, Bsm+bkflu	BSIN BSIN	VEZBO13BUTADM	WET			
- 		12/15/16	12:57	NR	GW	ao	92	111	7	11-1-	1	×	7	\rightarrow	Z	\rightarrow			5	-4		LAB USE ONLY
· 3-42 0		12/13/16	14 53	NR	GW	10	6	\vdash	14	╂╌╂╼╂╼	2	2	-5	5		~	Ž.	14	7-			
II TBIZISIG NR		12/13/16	1453		TO	2	2		11	╅╃┾	1	€.	- 4-	짇.	싀	싀	싀	<u> </u>		<u>_L</u>		
12 MW-225		12-14-K	1700	AK	GW	177			7	+++	7		A	X	뙤	ݖ	Z	X				
13 FB 12 1416		12-14-16	15-11	Ne	EB	L PY	2		+	╂═┞═┞	X	X	X	K	K	X	X	M	X			
1 5-31R(R)2(2)		12-16-16	1203	1 4 4	_		Ø.	+	4	╀┼	X	14	\mathcal{X}	\times L	Ä	إعر	S.	X		$\neg \top$		
4 5-31R(1) M5		12-16-16		1/4	GW	10	6		7		X	74	اعد	\succeq	X	XI,	K	য়া			7	
5-31 R(2) MSP			1225	100	GN		Ğ	٠.	4		6	K	K	4	ΧĪ	<u>v</u>	XT	সা			+	
15 TBIZIGIG NRA		12-16-16	1243	LLK!	CIV	_~	6		1		×	X	XI.	足。	215	Z	Z I	X	_	_	-	
TOTAL PICA		12-16-16	1243	<u> </u>	TB	2	2	_			X1	V	KI.	Z S	د آ	V	뉫	슀	$\neg +$	_	- -	
							\sqcap							' '	╁	~	~	4	-	-	+	
		i					77	$\neg \neg$			_	-	_	-	+	-	-+				4-	
							77	1			-	-		\rightarrow	+	+	-+			_ -	+	
Tymeround Time Business days)		effett vom Stigt	Althor (Str.)	516.25%		Data C)pubyorat	de Into	mation		alPlanes	STOP P	Stat Verein	7100(100)	-1					_ _		allineas suprimerative
X 84d. 10 Business Cays	decided by (BICLS)	Nanaman PAG: / (ham;		무:	Ommorphi	66 "A" (Le	val 1)			ASP Catego		V	VET C		RYII	NCLU	DESA	N. K. X	CE1 M	N 1/00	MARK!	CH4, XND30,
☐ 5 Day RUSH			i			ol "M" (Lo (Doc tovol				ASP Catego No Porms	7 0	15	04, AI	VD S						n, vn3	141134	1014, XMC130,
2 Day RUSH			- 1		J Reduce		,	, i		O Format		_										
1 Day RUSH			- !		governor C10			ē	_ Out			-										,
pether			l.	Commercial A	NJ Data or	f Known C	anality Pi	retocal	Report	ing HII + OC Sun		-										-
Emergency & Rush T.A data evadable VIA Labera												_										
Dan Jigan	Shrr College	pie Custody must	be docume	roled belo	ow each	(lme sam	ples ch	ange p	2048611	Non, Includ	ing cou	Hier de	ampië livery.	ulvent	ory is	venf	ed up	OON red	ceipt ir	the La	borat	lory
100/ Titotal 15-6-	168	Fe	de	X		2	-		FCD				Dam	irea:	Lub 12-	Res	rived By	Y:		establiz.	Partie go	COTY ON LANGUAGE
Grap Time:	3	acoused By				A.			, -2				_		124)	2			¥	_		
Refrequented by Date Tony	- I	moned By:				4							Dan-	Time:		Roo 4	errod By	r				,
	5	101				8	42	6	49	-	aci Colum	Ptu		have apple	t-obite			0	Pr (to-st	Com	or Tomp	

JC33945: Chain of Custody Page 2 of 4

EXECUTIVE NARRATIVE

SDG No:

JC33945

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8260C

Number of Samples:

15

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Fifteen (15) samples were analyzed for selected VOAs of the TCL list (1,3-butadiene) by method SW846-8260C. Samples were validated following USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

January 25, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33572-1

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-2

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-3

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16

Matrix: AQ - Field Blank Water

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-4

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16

Matrix: AQ - Equipment Blank

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-6

Sample location: BMSMC Building 5 Area

Sampling date: 16-Dec-16

Matrix: AQ - Equipment Blank

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-7

Sample location: BMSMC Building 5 Area

Sampling date: 14-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-8

Sample location: BMSMC Building 5 Area

Sampling date: 14-Dec-16 Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-9

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16 Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-10

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16 Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-12

. . . .

Sample location: BMSMC Building 5 Area

Sampling date: 14-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-13

Sample location: BMSMC Building 5 Area

Sampling date: 14-Dec-16

Matrix: AQ - Field Blank Water

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-14

Sample location: BMSMC Building 5 Area

Sampling date: 16-Dec-16 Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-15

Sample location: BMSMC Building 5 Area

Sampling date: 16-Dec-16

Matrix: AQ - Trip Blank Water

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 5.0 ug/l 1 - U Yes

Sample ID: JC33572-14MS

Sample location: BMSMC Building 5 Area

Sampling date: 16-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 43.9 ug/l 1 - Yes

Sample ID: JC33572-14MSD

Sample location: BMSMC Building 5 Area

Sampling date: 16-Dec-16

Matrix: Groundwater

METHOD: 8260C

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable 1,3-butadiene 37.2 ug/l 1 - U Yes

Reviewer: 1 and Date: January 25, 2017

J-

REVIEW OF VOLATILE ORG Low/Medium Volatile Da	
The following guidelines for evaluating volatile organics vactions. This document will assist the reviewer in us informed decision and in better serving the needs of assessed according to USEPA data validation guida precedence: USEPA Hazardous Waste Support Section Low/Medium Volatile Data Validation. July, 2015. Tlisted on the data review worksheets are from the prin noted.	were created to delineate required validation sing professional judgment to make more the data users. The sample results were not documents in the following order of the SOP No. HW-33A Revision 0 SOM02.2. The QC criteria and data validation actions
The hardcopied (laboratory name)Accutestbeen reviewed and the quality control and performance cincluded:	data package received has lata summarized. The data review for VOCs
Lab. Project/SDG No.:JC33572	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike DuplicateOverallComments:Selected_VOA_(1,3-Butadiene)_f	XLaboratory Control SpikesXField DuplicatesXCalibrationsXCompound IdentificationsXCompound QuantitationXQuantitation Limits from_the_TCL_list_(SW846_8260C)
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect	

1

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
9		
- 6		
1		
	>	
1002 — 11 00 V — 11000 5.52 — 11 10		
	-	
		<u></u>
		9
		-
		-
		-

All criteria were met_	_X	
Criteria were not met		
and/or see below	-	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
			-	
				<u> </u>
All agreeded and live	مرجون المرم والارم ومراجع المالات والمراجع	بمسائه بمسالها مطاله ماستم مستمسي	- 0	lan annandir annandir d
All samples analyz	ed within method rec	commended holding time	e. Samp	es properly preserved.
All samples analyz	ed within method red	commended holding time	e. Samp	les properly preserved.
All samples analyz	ed within method red	commended holding time	e. Samp	les properly preserved.

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 5.2° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, T = 4°C \pm 2°C), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (UJ) and non-detected compounds as estimated (UJ).

Non-aqueous samples

a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days

from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.

- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

			Action		
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
	3.7-	< 7.1	37	115-41-	
l	No	≤ 7 days	No qualification		
A 0330030	No	> 7 days	J	R	
Aqueous	Yes	≤ 14 days	No qu	qualification	
	Yes	> 14 days	J	R	
NT A	No	≤ 14 days	J	Professional judgment, UJ or R	
Non-Aqueous	Yes	≤ 14 days	No qualification		
	Yes/No	> 14 days	J	R	
TCLP/SPLP	Yes	≤ 14 days	No qu	alification	
TCLP/SPLP	No	> 14 days	J	R	

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qualification	
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J R	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J	R
Sample temperature outside 4°C ± 2°C upon receipt at the laboratory		Use profess	ional judgment
Holding times g		J	R

All criteria wer	e metX	
Criteria were not met see	below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X___ The BFB performance results were reviewed and found to be within the specified criteria.

__X___BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/572, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

List	the	samples	affected
-			

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:12/08/16	
Dates of continuing (initial) calibration:	_12/08/16
Dates of continuing calibration:	_12/26/16;_12/26/16
Dates of ending calibration:	·
Instrument ID numbers:	GCMS4B
Matrix/Level:	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
					1

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the method and validation guidance document required performance criteria. Closing calibration check verification not included in data package. No action taken, professional judgment.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum	Maximum	Opening	Closing	
*	RRF	%RSD_	Maximum %D1	Maximum %D	
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0	
Chloromethane	0.010	20.0	±30.0	±50.0	
Vinyl chloride	0.010	20.0	±25.0	±50.0	
Bromomethane	0.010	40.0	±30.0	±50.0	
Chloroethane	0.010	40.0	±25.0	±50.0	
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0	
1,1-Dichloroethene	0.060	20.0	±20.0	±25.0	
1,1.2-Trichloro-1,2,2-trifluoroethane	0.050	25.0	±25.0	±50.0	
Acetone	0.010	40.0	±40.0	±50.0	
Carbon disulfide	0.100	20.0	±25.0	±25.0	
Methyl acetate	0.010	40.0	±40.0	±50.0	
Methylene chloride	0.010	40.0	±30.0	±50.0	
trans-1,2-Dichloroethene	0.100	20.0	±20.0	±25.0	
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0	
1,1-Dichloroethane	0.300	20.0	±20.0	±25.0	
cis-1.2-Dichloroethene	0.200	20.0	±20.0	±25.0	
2-Butanone	0.010	40.0	±40.0	±50.0	
Bromochloromethane	0.100	20.0	±20.0	±25.0	
Chloroform	0.300	20.0	±20.0	±25.0	
1,1,1-Trichloroethane	0.050	20.0	±25.0	±25.0	
Cyclohexane	0.010	40.0	±25.0	±50.0	
Carbon tetrachloride	0.100	20.0	±25.0	±25.0	
Benzene	0.200	20.0	±20.0	±25.0	
1.2-Dichloroethane	0.070	20.0	±20.0	±25.0	
Trichloroethene	0.200	20.0	±20.0	±25.0	
Methylcyclohexane	0.050	40.0	±25.0	±50.0	
1,2-Dichloropropane	0.200	20.0	±20.0	±25.0	
Bromodichloromethane	0.300	20.0	±20.0	±25.0	
cis-1.3-Dichloropropene	0.300	20.0	±20.0	±25.0	
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0	
Toluene	0.300	20.0	±20.0	±25.0	
trans-1.3-Dichloropropene	0.200	20.0	±20.0	±25.0	
1.1.2-Trichloroethane	0.200	20.0	±20.0	±25.0	
Tetrachloroethene	0.100	20.0	±20.0	±25.0	
2-Hexanone	0.010	40.0	±40.0	±50.0	
Dibromochloromethane	0.200	20.0	±20.0	±25.0	
1.2-Dibromoethane	0.200	20.0	±20.0	±25.0	
Chlorobenzene	0.400	20.0	±20.0	±25.0	
Ethylbenzene	0.400	20.0	±20.0	±25.0	

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
m.p-Xylene	0.200	20.0	±20.0	±25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1,1.2,2-Tetrachloroethane	0.200	20.0	±25.0	±25.0
1.3-Dichlorobenzene	0.500	20.0	±20.0	±25.0
1.4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1.2,4-Trichlorobenzene	0.400	20.0	±30.0	±50.0
1,2,3-Trichlorobenzene	0.400	25.0	±30.0	±50.0
Deuterated Monitoring Compound				
Vinyl chloride-d3	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1.1-Dichloroethene-d2	0.050	20.0	±25.0	±25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1,2-Dichloroethane-d4	0.060	20.0	±25.0	±25.0
Benzene-dø	0.300	20.0	±20.0	±25.0
1,2-Dichloropropane-d6	0.200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene-d4	0.200	20.0	±20.0	±25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1,1,2,2-Tetrachloroethane-d2	0.200	20.0	±25.0	±25.0
1.2-Dichlorobenzene-d+	0.400	20.0	±20.0	±25.0

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - i. Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - i. Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Colored	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table for target analyte	Use professional judgment J+ or R	R	
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table for target analyte	No qualification	No qualification	

All criteria were met	X
Criteria were not met	
and/or see below	

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening	Criteria for	A	ction
CCV	Closing CCV	Detect	Non-detect
CCV not performed at required frequency	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF = Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R
RRF 2 Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	J	UJ
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table—for target analyte	No qualification	No qualification

All criteria were met	_X_	
Criteria were not met		
and/or see below		0.0

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
	1000	376		
	-			
Field/Equipme	nt/Trip blank			
If field or trip blathe method blar	,	nt, the data revi	ewer should evaluate this	s data in a similar fashion a
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
			(35%) (35%) (35%)	ociated_with_this_data
			=7.02	440

All criteria were met __X___ Criteria were not met and/or see below____

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	CROL*	< CRQL*	Report CRQL value with a U
	< CRQL *	≥ CRQL*	No qualification required
Method,		< CRQL*	Report CRQL value with a U
Storage, Field,		≥ CRQL* and ≤	Report blank value for sample
Trip,	> CRQL *	blank concentration	concentration with a U
TCLP/SPLP		≥ CRQL* and >	No qualification required
LEB.		blank concentration	140 quantication required
Instrument**	- CROI *	≤CRQL*	Report CRQL value with a U
	= CRQL*	> CRQL*	No qualification required
	Gross	Datasta	Report blank value for sample
	contamination	Detects	concentration with a U

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
<u></u>					
			-		

All criteria were met _	Χ
Criteria were not met	
and/or see below	

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1,1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1,2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1,2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1,1,2,2-	65-120	45-120
Tetrachloroethane-d2		
1,2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID Date DMCs % Recovery Action

Note: DMCs recoveries within the required limits and within the guidance document performance criteria (80 – 120). Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

- 1. For any recovery greater than the upper acceptance limit:
 - Qualify detected associated volatile target compounds as estimated high (J+).
 - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action		
Criteria	Detect Associated Compounds	Non-detected Associated Compounds	
%R < 10%	J-	R	
10% ≤ %R < Lower Acceptance Limit	J-	UJ	
Lower Acceptance Limit \leq % R \leq Upper Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-d3 (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d2 (DMC-3)
Vinyl chloride	Dichlorodifluoromethane Chloromethane Bromomethane Chloroethane Carbon disulfide	trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1-Dichloroethene
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-d4 (DMC-6)
Acetone 2-Butanone	1.1-Dichloroethane Bromochloromethane Chloroform Dibromochloromethane Bromoform	Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifluoroethane Methyl acetate Methylene chloride Methyl-tert-butyl ether 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dibromoethane 1,2-Dichloroethane
Benzene-de (DMC-7)	1,2-Dichloropropane-da (DMC-8)	Toluene-ds (DMC-9)
Benzene	Cyclohexane Methylcyclohexane 1.2-Dichloropropane Bromodichloromethane	Trichloroethene Toluene Tetrachloroethene Ethylbenzene o-Xylene m.p-Xylene Styrene Isopropylbenzene
trans-1,3-Dichloropropene-da (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachloroethane-d2 (DMC-12)
cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	4-Methyl-2-pentanone 2-Hexanone	1,1,2,2,-Tetrachloroethane 1,2-Dibromo-3-chloropropane
1,2-Dichlorobenzene-d4 (DMC-13) Chlorobenzene 1.3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2.4-Trichlorobenzene 1,2.3-Trichlorobenzene		

All criteria were met	_X	_
Criteria were not met		
and/or see below		

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the

MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:_ JC33945-14MS/-14MSD___

Matrix/Level: Groundwater

NAMES OF TAXABLE PARTY.

Note: MS/MSD % recoveries and RPD within laboratory control limits.

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

 No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	.X	_
Criteria were not met		
and/or see below		

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? **Yes** or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
_Recoveries	_(blank_spike)_	within_laboratory_control_	limits	
			13,2 - 17, 2\$3;	
			18.4	

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/laboratory duplicate analyzed with this data package, MS/MSD % recovery RPD used to					

No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to assess precision. PRD within required criteria, ≤ 50 % for target analytes detected at concentration > 5x the SQL.

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	_X
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
Internal standa	rd area counts with	nin the required o	criteria for all sam	nples.	

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or midpoint standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Act	ion
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J-	No qualification
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J+	R
Area counts \geq 50% but \leq 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qual	ification

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf ** Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
	ve Retention Times (RRTs) of reported configuration of the configuration	•
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum froi calibration)] n a. b.	10% must be present in the sample speci The relative intensities of these ions must and sample spectra (e.g., for an ion was spectrum, the corresponding sample ion a	sing CCV or mid-point standard from initial: Dectrum at a relative intensity greater than trum. St agree within ±20% between the standard ith an abundance of 50% in the standard
C.		ated by a reviewer experienced in mass
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

1	ist	TI	Co
	181	- 1 1	

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX	
Criteria were not met	
and/or see below	

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action	
	Detected Associated Compounds	Non-detected Associated Compounds
% Moisture < 70.0	No qualification	
70.0 < % Moisture < 90.0	J	UJ
% Moisture > 90.0	J	R

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

JC33572-14 MS

1,3-butadiene

RF = 0.619

[] = (139231)(50)/(0.619)(256259) = 43.9 ppb Ok

All criteria were met	X
Criteria were not met	
and/or see below	

Percent Solids
List samples which have ≥ 70 % solids

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	-	

All criteria were met _	X
Criteria were not met	
and/or see below	

OTHER ISSUES

A. List sa	System Per amples qualific	normance ed based on the degradation of system pe	erformance during simple analysis:
Samp	le ID	Comments	Actions
_No_0	degradation_c	f_system_performance_observed.	
Action	1:		
degra	ded during sa	udgment to qualify the data if it is det ample analyses. Inform the Contract Lab n of system performance which significan	poratory Program COR any action as a
В.	Overall Ass	essment of Data	
List sa	amples qualific	ed based on other issues:	
Samp	le ID	Comments	Actions
		ues_observed_that_require_qualification_ _decission_purposes	

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

EXECUTIVE NARRATIVE

SDG No:

. . .

JC33945

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

14

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Fourteen (14) samples were analyzed for selected SVOCs following method SW846-8270D and Selected PAHs and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 — Revision O. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major: Minor:

None None

Critical findings:

None

Major findings:

None

Minor findings:

 All samples extracted and analyzed within method recommended holding time except for the cases described in the Data Review Worksheet. Sample preservation was appropriate.

No action taken, professional judgment. Samples were re-extracted outside holding time for confirmation.

2. Initial and continuing calibration verifications meet the method and guidance document required performance criteria except in the cases described in the Data Review Worksheet. Results for were qualified as estimated (J or UJ) in affected samples.

No closing calibration verification included in data package. No action taken, professional judgment.

QC samples were not validated.

- **3.** Sample JC33945-12 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.
- 1,4-dioxane found in samples JC33945-7 and JC33945-8, results qualified (B).
- 4. Surrogate standards recovered within laboratory control limits except for the cases described in the Data Review Worksheet. No action taken.

Surrogates not recovered in samples JC33945-1; -2; -9; and -10 due to dilution. No action taken.

5. MS/MSD % recovery and RPD within laboratory control limits except for the cases described in the Data Review Worksheet.

Result for bis(2-Ethylhexyl)phthalate qualified as estimated (J) in sample JC33945-12.

No qualification made based on RPD results, professional judgment.

No action taken for analytes not meeting the MS/MSD % recovery control limit; outside control limits due to high level in sample relative to spike amount.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

January 26, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33945-1

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.3	ug/l	1	=	U	Yes
4-Chloro-3-methyl phenol	5.3	ug/l	1	=	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.3	ug/l	1	=	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.3	ug/l	1	=	U	Yes
2-Methylphenol	2.1	ug/l	1	=	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.3	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.2	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.3	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.3	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.3	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.3	ug/l	1	-	-	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.3	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	=	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	=	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	5.3	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.1	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.1	ug/l	1	-	U	Yes

bis(2-Chloroethyl)ether	2.1	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.1	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.1	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	-	U	Yes
1,4-Dioxane	1990	ug/l	100	-	-	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.3	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1	=	U	Yes
Di-n-octyl phthalate	2.1	ug/l	1	=	U	Yes
Diethyl phthalate	2.1	ug/l	1	=	U	Yes
Dimethyl phthalate	2.1	ug/l	1	=	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	=	U	Yes
Fluorene	1.1	ug/l	1	-	UJ	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	=	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	=	U	Yes
Hexachloroethane	2.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.1	ug/l	1	=	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	=	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.3	ug/l	1	=	U	Yes
3-Nitroaniline	5.3	ug/l	1	=	U	Yes
4-Nitroaniline	5.3	ug/l	1	-	U	Yes
Nitrobenzene	2.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.3	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	U	Yes
	8270D (SIM	1)				
Benzo(a)anthracene	0.053	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.053	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	-	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis (2-Chloroethoxy) methane	2.0	ug/l	1	-	U	Yes

bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
1,4-Dioxane	1680	ug/l	50	-	-	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.0	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis (2-Ethylhexyl) phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	UJ	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.0	ug/l	1	-	U	Yes
3-Nitroaniline	5.0	ug/l	1	-	U	Yes
4-Nitroaniline	5.0	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
	8270D (SIM	1)				
Benzo(a)anthracene	0.050	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.050	ug/l	1	=	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1	=	U	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	-	U	Yes
Chrysene	0.10	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	U	Yes
Naphthalene	0.10	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.4	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.4	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.4	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.4	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.4	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.3	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.4	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.4	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.4	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.4	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.4	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	=	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes

bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis (2-Chloroethyl) ether	2.2	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	=	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.4	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	UJ	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.4	ug/l	1	-	U	Yes
3-Nitroaniline	5.4	ug/l	1	-	U	Yes
4-Nitroaniline	5.4	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.4	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.054	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.054	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	=	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	0.174	ug/l	1	-	-	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.3	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.3	ug/l	1	=	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.3	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.3	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	-	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.3	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.2	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.3	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.3	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.3	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	=	U	Yes
Acenaphthylene	1.1	ug/l	1	=	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	=	U	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.3	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	=	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	=	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	=	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	=	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	_	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	_	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	5.3	ug/l	1	_	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.1	ug/l	1	_	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes

bis (2-Chloroethoxy) methane	2.1	ug/l	1	-	U	Yes
bis (2-Chloroethyl) ether	2.1	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.1	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.1	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.3	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.1	ug/l	1	-	U	Yes
Diethyl phthalate	2.1	ug/l	1	-	U	Yes
Dimethyl phthalate	2.1	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	=	U	Yes
Fluorene	1.1	ug/l	1	-	UJ	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.1	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.3	ug/l	1	-	U	Yes
3-Nitroaniline	5.3	ug/l	1	-	U	Yes
4-Nitroaniline	5.3	ug/l	1	-	U	Yes
Nitrobenzene	2.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	=	U	Yes
Nitrosodiphenylamine	5.3	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	U	Yes
, , ,		G,				
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.053	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.053	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	=	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	0.11	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/16/2016

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.6	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.4	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes

bis(2-Chloroethyl)ether	2.2	ug/l	1	_	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.6	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.6	ug/l	1	-	U	Yes
3-Nitroaniline	5.6	ug/l	1	-	U	Yes
4-Nitroaniline	5.6	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.6	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
METHOD.	8270D (SIM	4١				
Benzo(a)anthracene	0.056	ug/l	1	_	U	Yes
Benzo(a)pyrene	0.056	ug/l	1	_	U	Yes
Benzo(b)fluoranthene	0.030	ug/l	1	_	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	_	U	Yes
Chrysene	0.11	ug/l	1	_	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	_	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	_	U	Yes
Naphthalene	0.11	ug/l	1	_	U	Yes
1,4-Dioxane	0.11	ug/l	1	_	U	Yes
1, 1 DIONAITE	0.11	~b/ ¹	±		9	103

Sample location: BMSMC Building 5 Area

Sampling date: 12/14/2016 Matrix: Groundwater

WILTHOD.						
Analyte Name	Result		Dilution Factor	Lab Flag		=
2-Chlorophenol	5.3	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.3	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.3	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.3	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	-	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.3	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.3	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.3	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.3	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.3	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.3	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	1.1	ug/l	1	J	J	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	1.2	ug/l	1	J	J	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.1	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.1	ug/l	1	=	U	Yes

bis(2-Chloroisopropyl)ether	2.1	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.1	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.3	ug/l	1	=	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1	=	U	Yes
Di-n-octyl phthalate	2.1	ug/l	1	-	U	Yes
Diethyl phthalate	2.1	ug/l	1	-	U	Yes
Dimethyl phthalate	2.1	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.1	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.3	ug/l	1	-	U	Yes
3-Nitroaniline	5.3	ug/l	1	-	U	Yes
4-Nitroaniline	5.3	ug/l	1	-	U	Yes
Nitrobenzene	2.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.3	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	U	Yes
METHOD	00705 (61)	a \				
	8270D (SIM		4			.,
Benzo(a)anthracene	0.053	ug/l	1	=	U	Yes
Benzo(a)pyrene	0.053	ug/l	1	=	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	0.160	ug/l	1	-	-	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/14/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	=	U	Yes
3&4-Methylphenol	2.0	ug/l	1	=	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	=	U	Yes
Pentachlorophenol	4.0	ug/l	1	=	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	=	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	=	U	Yes
Atrazine	2.0	ug/l	1	=	U	Yes
Benzaldehyde	5.1	ug/l	1	=	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	0.96	ug/l	1	J	J	Yes
Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes

bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	=	U	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	=	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	=	U	Yes
Dibenzofuran	5.1	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	U	Yes
Diethyl phthalate	2.0	ug/l	1	-	U	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	U	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	-	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	=	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.1	ug/l	1	-	U	Yes
3-Nitroaniline	5.1	ug/l	1	-	U	Yes
4-Nitroaniline	5.1	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	=	U	Yes
Nitrosodiphenylamine	5.1	ug/l	1	=	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	=	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.050	ug/l	1	_	U	Yes
Benzo(a)pyrene	0.050	ug/l	1	_	U	Yes
Benzo(b)fluoranthene	0.10	ug/l	1	_	U	Yes
Benzo(k)fluoranthene	0.10	ug/l	1	_	U	Yes
Chrysene	0.10	ug/l	1	_	U	Yes
Dibenzo(a,h)anthracene	0.10	ug/l	1	_	U	Yes
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	_	U	Yes
Naphthalene	0.10	ug/l	1	_	U	Yes
1,4-Dioxane	1.64	ug/l	1	_	-	Yes
I, r Dioxuite	1.04	46/ ¹	±			103

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.3	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.3	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.3	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.3	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	-	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.3	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.3	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.3	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.3	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.3	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.3	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	=	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	=	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	=	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	=	U	Yes
4-Chloroaniline	5.3	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.1	ug/l	1	=	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.1	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.1	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.1	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	2.1	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/l	1	-	U	Yes
1,4-Dioxane	2530	ug/l	100	-	-	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.3	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.1	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.1	ug/l	1	-	U	Yes
Diethyl phthalate	2.1	ug/l	1	-	U	Yes
Dimethyl phthalate	2.1	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	-	-	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	UJ	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.1	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.3	ug/l	1	-	U	Yes
3-Nitroaniline	5.3	ug/l	1	-	U	Yes
4-Nitroaniline	5.3	ug/l	1	-	U	Yes
Nitrobenzene	2.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.3	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	U	Yes
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.053	ug/l	1	_	U	Yes
Benzo(a)pyrene	0.053	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	_	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	Ū	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes
		-				

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.4	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.4	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.4	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.4	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.4	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.3	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.4	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.4	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.4	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.4	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.4	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis (2-Chloroethoxy) methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes

bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
1,4-Dioxane	1560	ug/l	50	-	-	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.4	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	UJ	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.4	ug/l	1	-	U	Yes
3-Nitroaniline	5.4	ug/l	1	-	U	Yes
4-Nitroaniline	5.4	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.4	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
		O.				
METHOD:	8270D (SIM	1)				
Benzo(a)anthracene	0.054	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.054	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	=	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/14/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.5	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.5	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.5	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.5	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.5	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.3	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.5	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.5	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.5	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.5	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.5	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	=	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	=	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.5	ug/l	1	=	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	29.8	ug/l	1	В	-	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.5	ug/l	1	=	U	Yes
3-Nitroaniline	5.5	ug/l	1	-	U	Yes
4-Nitroaniline	5.5	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.5	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
METHOD	9270D /CIN	۸\				
	8270D (SIM 0.055	•	1		11	Yes
Benzo(a)anthracene Benzo(a)pyrene	0.055	ug/l	1	=	U U	Yes
	0.055	ug/l	1	-	U	
Benzo(b)fluoranthene Benzo(k)fluoranthene		ug/l	1	=	_	Yes
` '	0.11	ug/l	1	-	U	Yes
Chrysene Dibonzo(a h)anthracene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U U	Yes
1,4-Dioxane	0.11	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/14/196

Matrix: AQ- Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	=	U	Yes
3&4-Methylphenol	2.2	ug/l	1	=	U	Yes
2-Nitrophenol	5.6	ug/l	1	=	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	4.5	ug/l	1	=	U	Yes
Phenol	2.2	ug/l	1	=	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	=	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	=	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	=	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	=	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes

bis(2-Chloroisopropyl)ether	2.2	ug/l	1	_	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.6	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.6	ug/l	1	-	U	Yes
3-Nitroaniline	5.6	ug/l	1	-	U	Yes
4-Nitroaniline	5.6	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.6	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
METHOR	02705 (61)	a \				
	8270D (SIM	•	4			.,
Benzo(a)anthracene	0.056	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.056	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.11	ug/l	1	=	U	Yes
Benzo(k)fluoranthene	0.11	ug/l	1	-	U	Yes
Chrysene	0.11	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.11	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	0.11	ug/l	1	-	U	Yes
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	0.11	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/16/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	18.4	ug/l	1	-	-	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	U	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	UJ	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	6.9	ug/l	1	-	-	Yes
Anthracene	3.9	ug/l	1	-	=	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	2.0	ug/l	1	J	J	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	UJ	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	UJ	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes

bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes	
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes	
bis (2-Chlorois opropyl) ether	2.0	ug/l	1	-	U	Yes	
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	U	Yes	
2,4-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes	
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes	
1,4-Dioxane	22.0	ug/l	1	-	-	Yes	
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes	
Dibenzofuran	5.0	ug/l	1	=	U	Yes	
Di-n-butyl phthalate	2.0	ug/l	1	-	U	Yes	
Di-n-octyl phthalate	2.0	ug/l	1	=	U	Yes	
Diethyl phthalate	2.0	ug/l	1	=	U	Yes	
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes	
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	=	U	Yes	
Fluoranthene	1.0	ug/l	1	-	U	Yes	
Fluorene	1.0	ug/l	1	-	U	Yes	
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes	
Hexachlorobutadiene	1.0	ug/l	1	-	UJ	Yes	
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes	
Hexachloroethane	2.0	ug/l	1	-	U	Yes	
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes	
Isophorone	2.0	ug/l	1	=	U	Yes	
1-Methylnaphthalene	1.0	ug/l	1	=	U	Yes	
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes	
2-Nitroaniline	5.0	ug/l	1	=	U	Yes	
3-Nitroaniline	5.0	ug/l	1	-	U	Yes	
4-Nitroaniline	5.0	ug/l	1	-	U	Yes	
Nitrobenzene	2.0	ug/l	1	-	U	Yes	
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes	
Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes	
Phenanthrene	1.0	ug/l	1	-	U	Yes	
Pyrene	1.0	ug/l	1	-	U	Yes	
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes	
METHOD): 8270D (SIM	1)					
Benzo(a)anthracene	0.050	ug/l	1	-	U	Yes	
Benzo(a)pyrene	0.050	ug/l	1	=	U	Yes	
Benzo(b)fluoranthene	0.10	ug/l	1	=	U	Yes	
Benzo(k)fluoranthene	0.10	ug/l	1	=	U	Yes	
Chrysene	0.10	ug/l	1	-	U	Yes	
Dibenzo(a,h)anthracene	0.10	ug/l	1	-	U	Yes	
Indeno(1,2,3-cd)pyrene	0.10	ug/l	1	-	U	Yes	
Naphthalene	0.10	ug/l	1	-	U	Yes	
		-					

Sample location: BMSMC Building 5 Area

Sampling date: 12/16/2016 Matrix: Groundwater

WILTHOD.						
Analyte Name	Result		Dilution Factor	Lab Flag	Validation	
2-Chlorophenol	32.2	ug/l	1	-	-	Yes
4-Chloro-3-methyl phenol	38.6	ug/l	1	-	-	Yes
2,4-Dichlorophenol	36.7	ug/l	1	-	-	Yes
2,4-Dimethylphenol	54.9	ug/l	1	-	-	Yes
2,4-Dinitrophenol	71	ug/l	1	-	-	Yes
4,6-Dinitro-o-cresol	38.0	ug/l	1	-	-	Yes
2-Methylphenol	34.8	ug/l	1	-	-	Yes
3&4-Methylphenol	34.6	ug/l	1	-	-	Yes
2-Nitrophenol	34.6	ug/l	1	-	-	Yes
4-Nitrophenol	35.4	ug/l	1	-	-	Yes
Pentachlorophenol	43.0	ug/l	1	-	-	Yes
Phenol	21.3	ug/l	1	-	-	Yes
2,3,4,6-Tetrachlorophenol	36.8	ug/l	1	-	-	Yes
2,4,5-Trichlorophenol	37.1	ug/l	1	-	-	Yes
2,4,6-Trichlorophenol	38.9	ug/l	1	-	-	Yes
Acenaphthene	34.3	ug/l	1	-	-	Yes
Acenaphthylene	34.2	ug/l	1	-	-	Yes
Acetophenone	39.4	ug/l	1	-	-	Yes
Anthracene	41.2	ug/l	1	-	-	Yes
Atrazine	39.7	ug/l	1	-	-	Yes
Benzaldehyde	32.7	ug/l	1	-	-	Yes
Benzo(a)anthracene	38.6	ug/l	1	-	-	Yes
Benzo(a)pyrene	38.1	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	38.7	ug/l	1	-	-	Yes
Benzo(g,h,i)perylene	38.2	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	37.4	ug/l	1	-	-	Yes
4-Bromophenyl phenyl ether	36.2	ug/l	1	-	-	Yes
Butyl benzyl phthalate	38.8	ug/l	1	-	-	Yes
1,1'-Biphenyl	36.3	ug/l	1	-	-	Yes
2-Chloronaphthalene	32.0	ug/l	1	-	-	Yes
4-Chloroaniline	35.2	ug/l	1	-	-	Yes
Carbazole	39.9	ug/l	1	-	-	Yes
Caprolactam	12.4	ug/l	1	-	-	Yes
Chrysene	39.2	ug/l	1	-	-	Yes
bis(2-Chloroethoxy)methane	33.0	ug/l	1	-	-	Yes
bis(2-Chloroethyl)ether	33.5	ug/l	1	-	-	Yes

bis(2-Chloroisopropyl)ether	28.4	ug/l	1	_	-	Yes
4-Chlorophenyl phenyl ether	35.3	ug/l	1	=	-	Yes
2,4-Dinitrotoluene	39.5	ug/l	1	_	_	Yes
2,6-Dinitrotoluene	38.9	ug/l	1	_	_	Yes
3,3'-Dichlorobenzidine	45.8	ug/l	1	_	_	Yes
1.4-Dioxane	43.8	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	38.0	ug/l	1	-	-	Yes
Dibenzofuran	37.3	ug/l	1	-	-	Yes
Di-n-butyl phthalate	39.8	ug/l	1	-	-	Yes
Di-n-octyl phthalate	39.5	ug/l	1	-	-	Yes
Diethyl phthalate	37.6	ug/l	1	-	-	Yes
Dimethyl phthalate	36.2	ug/l	1	=	-	Yes
bis(2-Ethylhexyl)phthalate	39.9	ug/l	1	_	-	Yes
Fluoranthene	39.0	ug/l	1	=	-	Yes
Fluorene	36.6	ug/l	1	_	-	Yes
Hexachlorobenzene	37.1	ug/l	1	_	-	Yes
Hexachlorobutadiene	23.4	ug/l	1	-	-	Yes
Hexachlorocyclopentadiene	21.0	ug/l	1	-	-	Yes
Hexachloroethane	21.7	ug/l	1	_	-	Yes
Indeno(1,2,3-cd)pyrene	38.4	ug/l	1	-	-	Yes
Isophorone	33.9	ug/l	1	-	-	Yes
1-Methylnaphthalene	32.0	ug/l	1	-	-	Yes
2-Methylnaphthalene	33.5	ug/l	1	-	-	Yes
2-Nitroaniline	39.9	ug/l	1	-	-	Yes
3-Nitroaniline	30.8	ug/l	1	-	-	Yes
4-Nitroaniline	37.2	ug/l	1	-	-	Yes
Nitrobenzene	32.6	ug/l	1	-	-	Yes
N-Nitroso-di-n-propylamine	36.2	ug/l	1	-	-	Yes
Nitrosodiphenylamine	38.1	ug/l	1	-	-	Yes
Phenanthrene	42.3	ug/l	1	-	-	Yes
Pyrene	32.5	ug/l	1	-	-	Yes
1,2,4,5-Tetrachlorobenzene	42.0	ug/l	1	-	-	Yes
METHOD:	8270D (SIN	1)				
Benzo(a)anthracene	0.885	ug/l	1	-	-	Yes
Benzo(a)pyrene	0.521	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	0.607	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	0.544	ug/l	1	-	-	Yes
Chrysene	0.715	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	0.475	ug/l	1	=	-	Yes
Indeno(1,2,3-cd)pyrene	0.499	ug/l	1	_	-	Yes
Naphthalene	0.518	ug/l	1	_	-	Yes
1,4-Dioxane	8.43	ug/l	1	-	-	Yes

Sample ID: JC33945-14MSD

Sample location: BMSMC Building 5 Area

Sampling date: 12/16/2016 Matrix: Groundwater

Analyte Name	Result	Lloite	Dilution Factor	Lab Flag	Validation	Donortable
Analyte Name 2-Chlorophenol	35.1		1	Lau Flag	valluation	Yes
4-Chloro-3-methyl phenol	43.0	ug/l ug/l	1	-	-	Yes
2,4-Dichlorophenol	43.0 41.1	_	1	-	-	Yes
2,4-Dimethylphenol	63.6	ug/l	1	-	=	Yes
• • •	85	ug/l	1	-	-	Yes
2,4-Dinitrophenol		ug/l		-	-	
4,6-Dinitro-o-cresol	45.1	ug/l	1	-	-	Yes
2-Methylphenol	37.9	ug/l	1	-	-	Yes
3&4-Methylphenol	37.3	ug/l	1	-	-	Yes
2-Nitrophenol	40.1	ug/l	1	-	=	Yes
4-Nitrophenol	35.0	ug/l	1	=	=	Yes
Pentachlorophenol	47.0	ug/l	1	-	-	Yes
Phenol	22.9	ug/l	1	=	=	Yes
2,3,4,6-Tetrachlorophenol	39.6	ug/l	1	-	=	Yes
2,4,5-Trichlorophenol	41.4	ug/l	1	-	-	Yes
2,4,6-Trichlorophenol	43.2	ug/l	1	=	=	Yes
Acenaphthene	38.3	ug/l	1	-	-	Yes
Acenaphthylene	38.4	ug/l	1	-	-	Yes
Acetophenone	45.4	ug/l	1	-	-	Yes
Anthracene	44.8	ug/l	1	-	-	Yes
Atrazine	43.5	ug/l	1	-	=	Yes
Benzaldehyde	36.2	ug/l	1	-	-	Yes
Benzo(a)anthracene	41.7	ug/l	1	-	-	Yes
Benzo(a)pyrene	40.8	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	39.6	ug/l	1	-	-	Yes
Benzo(g,h,i)perylene	40.6	ug/l	1	-	=	Yes
Benzo(k)fluoranthene	41.6	ug/l	1	-	-	Yes
4-Bromophenyl phenyl ether	40.3	ug/l	1	-	-	Yes
Butyl benzyl phthalate	43.6	ug/l	1	-	-	Yes
1,1'-Biphenyl	39.7	ug/l	1	-	-	Yes
2-Chloronaphthalene	34.9	ug/l	1	-	-	Yes
4-Chloroaniline	35.8	ug/l	1	-	-	Yes
Carbazole	42.8	ug/l	1	-	-	Yes
Caprolactam	12.2	ug/l	1	-	=	Yes
Chrysene	42.7	ug/l	1	-	-	Yes
bis(2-Chloroethoxy)methane	37.5	ug/l	1	-	-	Yes
bis(2-Chloroethyl)ether	37.6	ug/l	1	=	-	Yes

bis(2-Chloroisopropyl)ether	30.8	ug/l	1	_	_	Yes
4-Chlorophenyl phenyl ether	38.6	ug/l	1	-	-	Yes
2,4-Dinitrotoluene	43.2	ug/l	1	=	-	Yes
2,6-Dinitrotoluene	43.2	ug/l	1	_	_	Yes
3,3'-Dichlorobenzidine	47.6	ug/l	1	_	_	Yes
1,4-Dioxane	45.90	ug/l	1	_	_	Yes
Dibenzo(a,h)anthracene	40.6	ug/l	1	-	-	Yes
Dibenzofuran	41.6	ug/l	1	-	-	Yes
Di-n-butyl phthalate	43.0	ug/l	1	-	-	Yes
Di-n-octyl phthalate	42.8	ug/l	1	-	-	Yes
Diethyl phthalate	41.3	ug/l	1	-	-	Yes
Dimethyl phthalate	41.1	ug/l	1	-	-	Yes
bis(2-Ethylhexyl)phthalate	44.2	ug/l	1	-	-	Yes
Fluoranthene	41.6	ug/l	1	-	-	Yes
Fluorene	39.5	ug/l	1	-	-	Yes
Hexachlorobenzene	39.9	ug/l	1	-	-	Yes
Hexachlorobutadiene	27.5	ug/l	1	-	-	Yes
Hexachlorocyclopentadiene	19	ug/l	1	-	-	Yes
Hexachloroethane	24.3	ug/l	1	-	-	Yes
Indeno(1,2,3-cd)pyrene	40.7	ug/l	1	-	-	Yes
Isophorone	39.1	ug/l	1	-	-	Yes
1-Methylnaphthalene	35.3	ug/l	1	=	-	Yes
2-Methylnaphthalene	38.3	ug/l	1	-	-	Yes
2-Nitroaniline	44.5	ug/l	1	=	-	Yes
3-Nitroaniline	31.2	ug/l	1	=	-	Yes
4-Nitroaniline	40.2	ug/l	1	=	-	Yes
Nitrobenzene	37.8	ug/l	1	-	-	Yes
N-Nitroso-di-n-propylamine	36.9	ug/l	1	=	-	Yes
Nitrosodiphenylamine	40.6	ug/l	1	=	-	Yes
Phenanthrene	41.8	ug/l	1	-	-	Yes
Pyrene	47.7	ug/l	1	-	-	Yes
1,2,4,5-Tetrachlorobenzene	35.7	ug/l	1	-	-	Yes
	8270D (SIM	•				
Benzo(a)anthracene	0.926	ug/l	1	-	-	Yes
Benzo(a)pyrene	0.490	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	0.589	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	0.510	ug/l	1	-	-	Yes
Chrysene	0.749	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	0.353	ug/l	1	_	-	Yes
Indeno(1,2,3-cd)pyrene	0.374	ug/l	1	-	-	Yes
Naphthalene	0.574	ug/l	1	-	-	Yes
1,4-Dioxane	7.50	ug/l	1	-	-	Yes

	Project Number: JC33945 Date:December_14-16,_2016 Shipping Date:December_12,_2016
	EPA Region:16
REVIEW OF SEMIVOLATILE C	DRGANIC PACKAGE
The following guidelines for evaluating volatile orgulation actions. This document will assist the remake more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous W 2015 –Revision 0. Semivolatile Data Validation. The Quon the data review worksheets are from the prima noted.	eviewer in using professional judgment to the needs of the data users. The sample a validation guidance documents in the laste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest	data package received has been a summarized. The data review for SVOCs
Lab. Project/SDG No.:JC33945	
Field duplicate No.:	
X Holding TimesX GC/MS TuningX Internal Standard PerformanceX Blanks	X Laboratory Control Spikes X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits
_Overall Comments:_SVOCs_TCL_special_list_analyzed_ and_1,4-Dioxane_analyzed_by_method_SW846-8270D_	_by_method_SW846-8270D;_Selected_PAHs _(SIM)
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer:	

DATA REVIEW WORKSHEETS

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
-		
· ·		
- 0		
	2	
	_1	
700		
	*	-
2	8	
		4
	· · · · · · · · · · · · · · · · · · ·	
	N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-

All criteria were met _	_X
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	рН	ACTION	
All samples extracted and analyzed within method recommended holding time except for the cases described in this document. Sample preservation appropriate.					
JC33945-12	12/14/16	12/22/16	-	No action	
JC33945-3 (SIM)	12/15/16	01/05/17	-	No action	

Note: No action taken, professional judgment. Samples were re-extracted outside holding time for confirmation.

Cooler temperature (Criteria: 4 ± 2 °C):	5.3°C	
--	-------	--

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

	Action					
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds		
	No ≤ 7 days (for extraction) ≤ 40 days (for analysis)		Use profession	onal judgment		
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment		
		≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qua	lification		
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	บเ		
	Yes/No	Grossly Exceeded	J	UJ or R		
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use profession	onal judgment		
	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment		
Non-Aqueous	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis) No qualifie		lification		
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	ΟΊ		
	Yes/No	Grossly Exceeded	J	UJ or R		

All criteria were metX	
Criteria were not met see below	

GC/MS TUNING

The assessment of the tuning results is to	determine if the	sample instrumental	tion is within	the standard
tuning QC limits				

_X__ The DFTPP performance results were reviewed and found to be within the specified criteria.

_X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:
1177			

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX_	
Criteria were not met	
and/or see below	

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:1 Instrument ID numbers:A Matrix/Level:A	GCMS2P	12/14/16_(SIM) GCMS4M Aqueous/low
Date of initial calibration:_11/2: Instrument ID numbers: Matrix/Level:	_GCMS4P	12/22-23/16_(SCAN) GCMS6P Aqueous/low
Date of initial calibration:_11/28 Instrument ID numbers: Matrix/Level:	_GCMSP	

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial	and initi	al calib		ts the method and guidance va	lidation document
performance criteria.					

Note: Instruments GCMS3M (SIM); GCMS3P (SIM); and GCMS2M (SCAN) were also employed for running QC samples for this data packages. QC samples not validated.

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	ΩJ	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D¹
1,4-Dioxane	0.010	40.0	± 40.0	± 50.0
Benzaldehyde	0.100	40.0	± 40.0	± 50.0
Phenol	0.080	20.0	±20.0	±25.0
Bis(2-chloroethyl)ether	0.100	20.0	± 20.0	± 25.0
2-Chlorophenol	0.200	20.0	± 20.0	± 25.0
2-Methylphenol	0.010	20.0	± 20.0	±25.0
3-Methylphenol	0.010	20.0	± 20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	± 25.0	± 50.0
Acetophenone	0.060	20.0	±20.0	±25.0
4-Methylphenol	0.010	20.0	±20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
llexachloroethane	0.100	20.0	±20.0	±25.0
Nitrobenzene	0.090	20.0	± 20.0	±25.0
Isophorone	0.100	20.0	± 20.0	± 25.0
2-Nitrophenol	0.060	20.0	± 20.0	± 25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	± 20.0	±25.0
2,4-Dichlorophenol	0.060	20.0	±20.0	±25.0
Naphthalene	0.200	20.0	± 20.0	± 25.0
4-Chloroaniline	0.010	40.0	± 40.0	± 50.0
lexachlorobutadiene	0.040	20.0	± 20.0	± 25.0
Caprolactam	0.010	40.0	± 30.0	± 50.0
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	±25.0
2-Methylnaphthalene	0.100	20.0	±20.0	±25.0
lexachlorocyclopentadiene	0.010	40.0	± 40.0	± 50.0
2,4,6-Trichlorophenol	0.090	20.0	± 20.0	±25.0
2,4,5-Trichlorophenol	0.100	20.0	± 20.0	± 25.0
1,1'-Biphenyl	0.200	20.0	± 20.0	±25.0

DATA REVIEW WORKSHEETS

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	±20.0	±25.0
2-Nitroaniline	0.060	20.0	±25.0	±25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	±20.0	± 25.0
Acenaphthylene	0.400	20.0	±20.0	±25.0
3-Nitroaniline	0.010	20.0	±25.0	± 50.0
Acenaphthene	0.200	20.0	± 20.0	± 25.0
2,4-Dinitrophenol	0.010	40.0	± 50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	± 50.0
Dibenzofuran	0.300	20.0	±20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	±20.0	± 25.0
Diethylphthalate	0.300	20.0	±20.0	± 25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	±20.0	± 25.0
4-Chlorophenyl-phenylether	0.100	20.0	±20.0	± 25.0
Fluorene	0.200	20.0	± 20.0	± 25.0
4-Nitroaniline	0.010	40.0	± 40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	±20.0	± 25.0
N-Nitrosodiphenylamine	0.100	20.0	±20.0	±25.0
Hexachlorobenzene	0.050	20.0	±20.0	±25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	± 40.0	± 50.0
Phenanthrene	0.200	20.0	±20.0	±25.0
Anthracene	0.200	20.0	±20.0	± 25.0
Carbazole	0.050	20.0	± 20.0	±25.0
Di-n-butylphthalate	0.500	20.0	± 20.0	±25.0
Fluoranthene	0.100	20.0	±20.0	± 25.0
Pyrene	0.400	20.0	±25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	±25.0	± 50.0

DATA REVIEW WORKSHEETS

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Opening Maximum %D¹
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	± 20.0	±25.0
Chrysene	0.200	20.0	±20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	±25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	± 40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	±20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	±30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	±20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	±25.0
2-Methylnaphthalene	0.300	20.0	± 20.0	±25.0
Acenaphthylene	0.900	20.0	± 20.0	±25.0
Acenaphthene	0.500	20.0	± 20.0	±25.0
Fluorene	0.700	20.0	±25.0	± 50.0
Phenanthrene	0.300	20.0	± 25.0	± 50.0
Anthracene	0.400	20.0	± 25.0	± 50.0
Fluoranthene	0.400	20.0	± 25.0	± 50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	±25.0	± 50.0
Chyrsene	0.400	20.0	± 25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	±25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	± 40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	±40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0	± 50.0	± 50.0	
Deuterated Monitoring Compounds					

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D	
I,4-Dioxane-d ₈	0.010	20.0	±25.0	± 50.0	
Phenol-d ₅	0.010	20.0	± 25.0	±25.0	
Bis-(2-chloroethyl)ether-d ₈	0.100	20.0	± 20.0	±25.0	
2-Chlorophenol-d4	0.200	20.0	±20.0	±25.0	
4-Methylphenol-d ₈	0.010	20.0	± 20.0	±25.0	
4-Chloroaniline-d ₄	0.010	40.0	±40.0	± 50.0	
Nitrobenzene-d ₅	0.050	20.0	± 20.0	±25.0	
2-Nitrophenol-d4	0.050	20.0	±20.0	±25.0	
2,4-Dichlorophenol-d ₃	0.060	20.0	± 20.0	± 25.0	
Dimethylphthalate-d ₆	0.300	20.0	± 20.0	±25.0	
Acenaphthylene-d ₈	0.400	20.0	±20.0	±25.0	
4-Nitrophenol-d ₁	0.010	40.0	± 40.0	± 50.0	
Fluorene-d ₁₀	0.100	20.0	± 20.0	±25.0	
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	±30.0	± 50.0	
Anthracene-d ₁₀	0.300	20.0	± 20.0	± 25.0	
Pyrene-d ₁₀	0.300	20.0	±25.0	±50.0	
Benzo(a)pyrene-d ₁₂	0.010	20.0	±20.0	± 50.0	
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	±25.0	±50.0	
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	±20.0	±25.0	

¹ If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met		
Criteria were not met		
and/or see below	_X	_

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration: 12/22-23/16_(Scan)	11/21/16_(SIM)
	11/21-22/16
Date of continuing calibration verification (CCV):_12/26/16	12/24/16;_12/29/16;
, ,-	01/03/17
Date of closing CCV:	-
Instrument ID numbers:GCMS6P	GCMS4P
Matrix/Level:Aqueous/low	
Date of initial calibration:12/14/16_(SIM)	11/28-29/16_(Scan)
Date of initial calibration verification (ICV):_12/15/16;_12/19/16	11/29-30/16
Date of continuing calibration verification (CCV):_12/19/16	12/30/16;_01/3-4/17
Date of closing CCV:	
Instrument ID numbers:GCMS4M	GCMSP
Matrix/Level:Aqueous/low	
Date of initial calibration:12/14/16_(SIM)	12/07-08/16
Date of initial calibration verification (ICV):_12/14/16;_12/19/16	
Date of continuing calibration verification (CCV):_12/22/16;_12/23/16	12/21/16
Date of closing CCV:	
Instrument ID numbers:GCMSF	GCMS2P
Matrix/Level:Aqueous/low	Aqueous/low

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D</u> ,	COMPOUND	SAMPLES AFFECTED
		r		
GCMS2P				
12/21/16	cc2850-50	32.1	Hechachlorocyclopentadiene*	JC33945-7; -8; -12;
		23.2	Pentachlorophenol*	-13
		-20.5	Butylbenzylphthalate*	
		-33.2	di-n-octylphthalate*	
GCMS4M				
12/23/16	cc3166-1.0	-26.3	Fluorene	JC33945-1 to -4; -9; -10
GCMS4P				
12/24/16	cc1064-1.0	-20.3	Benzo(b)fluoranthene*	JC33945-14
		-20.8	Dibenzo(a,h)anthracene*	
01/06/17	cc1064-1.0	-26.0	Benzo(b)fluoranthene*	JC33945-3
		-20.8	Dibenzo(a,h)anthracene*	_

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D</u> ,	COMPOUND	SAMPLES AFFECTED
		r		
GCMSP				
12/30/16	cc4851-25	-25.5 ✓	Hexachllorobutadiene	JC33945-1 to -4; -9;
		-30.7	2,4-dinitrophenol*	-10; -12
		-22.4 ✓	2,3,4,6-tetrachlorophenol	
		-23.7	4,6-dinitro-2-methylphenol*	
		-20.7	Pentachlorophenol*]
01/03/17	cc4851-50	-29.7 ✓	Hexachllorobutadiene	JC33945-1; -2; -9;
		-24.3 ✓	2,3,46-tetrachlorophenol	-10
		-21.3	4,6-dinitro-2-methylphenol*	
		-24.8	Pentachlorophenol*	
01/03/17	CC4852-50	26.3	Benzaldehyde*	
01/04/17	cc4851-25	28.7	1,4-dioxane*	JC33945-14
		-26.4	Hexachllorobutadiene	
8		-27.2	2,4-dinitrophenol*	
		-25.6	2,3,46-tetrachlorophenol	
		-25.9	4,6-dinitro-2-methylphenol*	
		-39.3 ✓	Benzo(b)fluoranthene	
		-29.5 ✓	Benzo(a)pyrene	

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in this document. Results qualified as estimated (J or UJ) in affected samples.

* % difference outside was method performance criteria but within the guidance document performance criteria. No action taken.

No action taken for QC samples.

No closing calibration verification included in data package. No action taken, professional judgment.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

	Calculation Classics CCV	Action		
Criteria for Opening CCV	Criteria for Closing CCV	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	UJ	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

All criteria were met		_
Criteria were not met		
and/or see below	_X	_

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	 lytes_detected_i	 n_method_bla	nks_except_in_the_ca	ases_described_in_this_document.
_12/22/16	_OP99387-MB1	AQ./low 	bis(2-ethylhexyl)_ 	phthalate21.2_ug/l
	sociated method	• •	s) reported with a "B"	qualifier, indicating analyte is found
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana _except_for_the	•	200		/zed_with_this_data_package
_12/23/16	JC33945-3	Aq./low	1,4-Dioxane	0.174_ug/l

Note: 1,4-dioxane found in samples JC33945-7 and JC33945-8, results qualified (B).

All criteria were met	_X_	
Criteria were not met		
and/or see below		

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	pe Blank Result Sample Result		Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
		< CRQL	Report at CRQL and qualify as non-detect (U)
Method,	≥CRQL	≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Action Criteria Detect Non-detect %R < 10% (excluding DMCs with 10% as a lower J-R acceptance limit) 10% ≤ %R (excluding DMCs with 10% as a lower J-UJ acceptance limit) < Lower Acceptance Limit Lower Acceptance limit ≤ %R ≤ Upper Acceptance Limit No qualification No qualification I+%R > Upper Acceptance Limit No qualification

Table 7. DMC Actions for Semivolatile Analysis

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Matrix:Groundwater_		
SAMPLE ID	SURROGATE COMPOUND	ACTION
_JC33945-14	2-Fluoropheol_13_%_control_limits:	_14-88_%No_action
	red_criteria_in_all_samples_analyzed_except_f leuterated_surrogatesadded_to_the_samples	
•		and 40 due to dilution No

Note: Surrogates not recovered in samples JC33945-1; -2; -9; and -10 due to dilution. No action taken.

Table 8. Semivolatile DMCs and the Associated Target Analytes

	Table Divices and the Associated Ta	
1,4–Dioxane-da (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
,	Phenol	2,2'-Oxybis(1-chloropropane)
		Bis(2-chloroethoxy)methane
2-Chlorophenol-d4(DMC-4)	4-Methylphenol-d ₈ (DMC-5)	4-Chloroaniline-d ₄ (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2,4-Dimethylphenol	
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene
· ·		*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d ₆ (DMC-10)	Acenaphthylene-d ₈ (DMC-I1)	4-Nitrophenol-d4 (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate	·	
Bis(2-ethylhexyl) phthalate		
Di-n-octylphthalate		

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran	4,6-Dinitro-2-methylphenol	Hexachlorobenzene
*Fluorene		Atrazine
4-Chlorophenyl-phenylether		*Phenanthrene
4-Bromophenyl-phenylether		*Anthracene
Carbazole	5	
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were met _		
Criteria were not met		
and/or see below	_X	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

The QC reported here applies to the following samples:	Method:	SW846 8270D
Sample ID:JC33925-14	Matrix/Level:	Groundwater
Sample ID:JC33925-1_(SIM)	Matrix/Level:	Groundwater
Sample ID:JC33925-1	Matrix/Level:	Groundwater
Sample ID:JC33831-7_(SIM)	Matrix/Level:	Groundwater
Sample ID:JC33945-12	Matrix/Level:	Groundwater

The QC reported here applies to the following sample	es:
JC33945-7, JC33945-8, JC33945-12, JC33945-13	

0000040 1, 0000	1, 1000040 1, 1000040 1, 1000040 12, 1000010 10									
Compound	JC3394 ug/l	5-12 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
•	-	CK .	_	_		_	_			
2-Chlorophenol	ND		110	78.7	72	110	64.0	58	21* a	49-110/20
2-Methylphenol	ND		110	79.1	72	110	62.5	57	23* a	47-112/18
3&4-										
Methylphenol	ND		110	74.6	68	110	60.1	55	22* a	44-113/19
Phenol	ND		110	44.0	40	110	33.8	31	26* a	22-100/22
bis(2-Ethylhexy	l)									
phthalate	29.8	В	110	141	101	110	191	147* b	30* a	34-141/28

⁽a) Analytical precision exceeds in-house control limits.

Note: No qualification made based on RPD results, professional judgment. Result for bis(2-Ethylhexyl)phthalate qualified as estimated (J) in sample JC33945-12.

⁽b) Outside of in house control limits.

^{* -} outside control limits

The QC reported here applies to the following samples:

Method: SW846 8270D JC33945-1, JC33945-2, JC33945-3, JC33945-4, JC33945-9, JC33945-10

Compound 2-Chlorophenol 2,4-Dichloro-	JC33925-1 ug/l Q ND	Spike ug/l 54.9	MS ug/l 29.0	MS % 53	Spike ug/l 52.6	MSD ug/l 39.7	MSD % 75	RPD 31* a	Limits Rec/RPD 49-110/20
phenol	ND	54.9	31.4	57	52.6	39.2	74	22* a	42-120/19
2-Methylphenol 3&4-	ND	54.9	32.2	59	52.6	40.9	78	24* a	47-112/18
Methylphenol	ND	54.9	31.0	56	52.6	39.7	75	25* a	44-113/19
2-Nitrophenol	ND	54.9	31.3	57	52.6	41.4	79	28* a	45-118/20
Acetophenone	ND	54.9	34.2	62	52.6	46.1	88	30* a	31-141/23
bis(2-Chloroisop	oropyl)-								
ether Hexachloro-	ND	54.9	29.9	54	52.6	39.5	75	28* a	41-117/25
butadiene	ND	54.9	21.7	39	52.6	28.2	54	26* a	26-121/24
Hexachlorocyclo	o-								
pentadiene	ND	110	31.1	28	105	43.6	41	33* a	10-133/31
Isophorone	ND	54.9	30.0	55	52.6	38.0	72	24* a	47-126/23
2-Methyl-									
naphthalene N-Nitroso-di-n-	ND	54.9	31.2	57	52.6	40.4	77	26* a	34-123/24
propylamine	ND	54.9	31.0	56	52.6	40.6	77	27* a	45-123/22

⁽a) Analytical precision exceeds in-house control limits.

Note: No qualification made based on RPD results, professional judgment.

The QC reported here applies to the following samples:

JC33945-1, JC33945-2, JC33945-3, JC33945-4, JC33945-9, JC33945-10

Compound	JC339 ug/l	25-1 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
Dibenzo(a,h) anthracene Indeno(1,2,3-co	ND		1.1	0.500	46	1.1	0.404	37 a	21 a	10-116/48
pyrene	ND		1.1	0.495	45	1.1	0.424	39 a	15	10-116/48

⁽a) Outside the RCP limits.

Note: No action taken, professional judgment.

Method: SW846 8270D BY SIM

^{* -} outside control limits

The QC reported here applies to the following samples: JC33945-6, JC33945-14

			Spike			Spike				Limits
Compound										Rec/RPD
1.4-Dioxane	17.6	Е	1.02	8.43	0* a	1.02	7.50	0* a	12	20-160/30

⁽a) Outside control limits due to high level in sample relative to spike amount.

Note: No action taken, outside control limits due to high level in sample relative to spike amount.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

Method: SW846 8270D BY SIM

^{* -} outside control limits

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
Internal area	meets the requ	ired criteria for batch sar	nples corres	ponding to this data	oackage.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria -	Action	
Стнетія —	Detect	Non-detect
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
		ounds within ±0.06 RRT units of the standard CV) or mid-point standard from the initial Yes? or No?
List compoun	nds not meeting the criteria described above:	
	Compounds	Actions
Mass spectra	m the associated calibration standard (open must match according to the following criteria: All ions present in the standard mass spe must be present in the sample spectrum. The relative intensities of these ions must sample spectra (e.g., for an ion with an the corresponding sample ion abundance lons present at greater than 10% in the s	aboratory-generated standard [i.e., the mass ening CCV or mid-point standard from initial ectrum at a relative intensity greater than 10% agree within ±20% between the standard and abundance of 50% in the standard spectrum,
List compoun	nds not meeting the criteria described above:	
Sample ID	Compounds	Actions
Identified co	ompounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

B 3	-4	T	_
L	ISI		lCs

Sample ID	Compound	Sample ID	Compound
=======================================	=======================================		

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _	_X_	
Criteria were not met		
and/or see below		_

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Cuitania	Ac	Action		
Criteria	Detects	Non-detects		
%Solids < 10.0%	Use professional judgment	Use professional judgment		
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment		
%Solids > 30.0%	No qualification	No qualification		

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

DILUTION FACTOR	REASON FOR DILUTION
100 x	1,4-dioxane outside calibration range
50 x	1,4-dioxane outside calibration range
100 x	1,4-dioxane outside calibration range
50 x	1,4-dioxane outside calibration range
	FACTOR 100 x 50 x 100 x

	All criteria were met Criteria were not met and/or see belowN/A
FIELD DUPLICATE PRECISION	
Sample IDs:	 Matrix:

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
	ecision. R	PD within the r	part of this data packa equired guidance docu		

All criteria were metX	
Criteria were not met	
and/or see below	

OTHER ISSUES

Linto	amalaa ayalifiad	d based on the degradation of system	norformanco durina aimplo analysis:
LISES	ampies quaimed	based on the degradation of system	performance during simple analysis:
Samp	ole ID	Comments	Actions
====			
			<u>. </u>
Actio			
,	dation of syster	yses. Inform the Contract Laborator in performance which significantly afformance ssment of Data	ry Program COR any action as a result of ected the data.
List s	amples qualified	d based on other issues:	
Samp		Comments	Actions
====			
			e_dataResults_are_valid_and_can_be_used vn_below
1000	-		
Note	:		
Actio	n:		

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

EXECUTIVE NARRATIVE

SDG No:

JC33945

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8015C

Number of Samples:

17

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Seventeen (17) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Rafuel Defaut

Signature:

Date:

January 26, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33945-1

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	Ų	Yes

Sample ID: JC33945-2

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33945-3

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016

Matrix: AQ - Equipment Blank

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33945-5

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016

Matrix: AQ - Trip Blank Water

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33945-6

Sample location: BMSMC Building 5 Area

Sampling date: 12/16/2016

Matrix: AQ - Equipment Blank

METHOD.	OUTOC					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	υ	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/14/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	•	U	Yes
Isobutyl Alcohol	100	ug/l	1.0		U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0		U	Yes
n-Butyl Alcohol	100	ug/l	1.0		U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0		U	Yes

Sample ID: JC33945-8

Sample location: BMSMC Building 5 Area

Sampling date: 12/14/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	U	Yes
Isopropyi Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	•	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33945-9

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	•	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	•	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33945-11

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016

Matrix: AQ - Trip Blank Water

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33945-12

Sample location: BMSMC Building 5 Area

Sampling date: 12/14/2016 Matrix: Groundwater

1110111001						
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

. . . .

Sample location: BMSMC Building 5 Area

Sampling date: 12/14/2016

Matrix: AQ - Field Blank Water

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	_	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	•	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33945-14

Sample location: BMSMC Building 5 Area

Sampling date: 12/16/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	υ	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	υ	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC33945-15

Sample location: BMSMC Building 5 Area

Sampling date: 12/16/2016

Matrix: AQ - Trip Blank Water

	WETTOD.	00100					
	Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
E	thanol	100	ug/l	1.0	-	U	Yes
ls	obutyl Alcohol	100	ug/l	1.0	-	U	Yes
Is	opropyl Alcohol	100	ug/l	1.0	-	U	Yes
n	-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n	-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
56	ec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Ν	1ethanol	200	ug/l	1.0		U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/16/2016 Matrix: Groundwater

. . . .

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	4640	ug/l	1.0	-	-	Yes
Isobutyl Alcohol	5180	ug/l	1.0	-	-	Yes
Isopropyl Alcohol	5320	ug/l	1.0	-	-	Yes
n-Propyl Alcohol	4760	ug/l	1.0	-	-	Yes
n-Butyl Alcohol	5500	ug/l	1.0	-	-	Yes
sec-Butyl Alcohol	5980	ug/l	1.0	-	•	Yes
Methanol	5300	ug/l	1.0	-	-	Yes

Sample ID: JC33945-14MSD

Sample location: BMSMC Building 5 Area

Sampling date: 12/16/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	5150	ug/l	1.0	•	-	Yes
Isobutyl Alcohol	5660	ug/l	1.0	-		Yes
Isopropyl Alcohol	5160	ug/i	1.0	-	-	Yes
n-Propyl Alcohol	5580	ug/l	1.0	•	9.50	Yes
n-Butyl Alcohol	6030	ug/l	1.0	-	-	Yes
sec-Butyl Alcohol	6510	ug/l	1.0	-	-	Yes
Methanol	4580	ug/l	1.0	-	-	Yes

	roject Number:JC33945
	Date:12/14-16/2016
S	Shipping Date:12/16/2016
	PA Region: 2
REVIEW OF VOLATILE ORG The following guidelines for evaluating volatile organics were cre document will assist the reviewer in using professional judgme serving the needs of the data users. The sample results wer guidance documents in the following order of precedence Physical/Chemical Methods SW-846 (Final Update III, Decembe utilized. The QC criteria and data validation actions listed on guidance document, unless otherwise noted. The hardcopied (laboratory name) _Accutest_ and the quality control and performance data summarized. The re-	ANIC PACKAGE eated to delineate required validation actions. This ent to make more informed decision and in better re assessed according to USEPA data validation e: "Test Methods for Evaluating Solid Waste, er 1996)," specifically for Methods 8000/8015C are the data review worksheets are from the primary data package received has been reviewed
and the quality control and perioritiance data summarized. The t	nodined data review for VOC3 illeladed.
Lab. Project/SDG No.:JC33945	Sample matrix:Groundwater
No. of Samples:17	•
Trip blank No.:JC33945-5;_JC33945-11;_JC339 Field blank No.:JC33945-3;_JC33945-13 Equipment blank No.:JC33945-4_ Field duplicate No.:	
X Holding TimesN/A_ GC/MS TuningN/A_ Internal Standard PerformanceX Blanks	X Laboratory Control Spikes X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits
Overall Comments:_Low_molecular_weight_alcohols_l	oy_SW-846_8015C
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Date: January 26, 2017	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
N		
	1	
	1	
	1	
d.00 00		
		1
	A	

All criteria were met _X	
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
·				
All samples analyz	ed within the recomn	nended method holding.	All sam	oles properly preserved.
	-			152405
	-		-	
				1.7

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 5.3°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

All criteria were metN/A Criteria were not met see below
rumentation is within the standard
rithin the specified criteria.
is.
data should be accepted, qualified

G

GC/MS TUNING
The assessment of the tuning results is to determine if the sample instrumentation is within the standar uning QC limits
N/A The BFB performance results were reviewed and found to be within the specified criteria.
N/A BFB tuning was performed for every 12 hours of sample analysis.
f no, use professional judgment to determine whether the associated data should be accepted, qualifie or rejected.
ist the samples affected:
f mass calibration is in error, all associated data are rejected.

All criteria were metX_	
Criteria were not met	
and/or see below	_

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Daf	te of initial calibration:	10/10/16
Dat	tes of continuing calibration:	12/21/16;_12/22/16
Dat	tes of final calibration verification	n:10/10/10;_12/21/16;_12/22/16
Ins	trument ID number:	GCGH
Mai	ıtrix/Level:Aqu	eous/low
Inst	trument ID number:	GCGH

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
	-			

Note: Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns. Final calibration verification included in data packages.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be < 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _	_X	
Criteria were not met		
and/or see below		

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method		<u> </u>		
Field/Equipmen				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	llytes_detected	_in_the_trip/fiel	d/equipment_blanks_ar	nalyzed_with_this_data_package
8-07/15-7				
	a, 600			

All criteria were met _X_	
Criteria were not met	
and/or see below	

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				-65	
					,
				<u> </u>	
E Service Control of the Control of		1			

All criteria were met ___X___ Criteria were not met and/or see below _____

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID	SURROGATE COMPOUND					ACTION
	Hexan	ol DB	FM	TOL-d8	BFB	
	S1 a	S1 b				
JC33945-1	107	94				
JC33945-2	108	95				
JC33945-3	116	97				
JC33945-4	102	94				
JC33945-5	94	88				
JC33945-6	96	89				
JC33945-7	91	90				
JC33945-8	92	97				
JC33945-9	91	84				
JC33945-10	77	68				
JC33945-11	113	103				
JC33945-12	104	97				
JC33945-13	114	96				
JC33945-14	94	90				
JC33945-15	100	96				
GGH5594-BS	97	101				
GGH5594-MB1	82	93				
GGH5594-MB2	86	85				
GGH5595-BS	98	99				
GGH5595-MB2	90	88				
GGH5595-MB3	88	89				
JC33945-14MS	112	101				
JC33945-14MSD	110	106				
JC33945-8MS	86	84				
JC33945-8MSD	95	90				
(a) Recovery from GC (sianal #2	ı	(b) Recov	erv from GC sin	nal #1	

(a) Recovery from GC signal #2

(b) Recovery from GC signal #1

Note: All surrogate recoveries within laboratory control limits.

QC Limits* (Aqueous)				
LL_to_UL	_56_to_145_	to	to	to
QC Limits* (Solid-Low)				
LL_to_UL	to	to	to	to
QC Limits* (Solid-Med)				
LL_to_UL	to	to	to	to
1,2-DCA = 1,2-Dichloro				Toluene-d8 mofluorobenzene

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met _X	
Criteria were not met	
and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

	33945-8MS/-8MSD_ 33945-14MS/-14MS[)	Matrix/Level:Groundwater/low Matrix/Level:Groundwater/low			
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD%_re	coveries_and_RPD_	within_lab	oratory_	control_limits		
						_
			- 4			

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All criteria were met __X___ Criteria were not met and/or see below

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit:	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
					100
				2000 AV	
	3				<u> </u>
			31.00		

Actions:

A separate worksheet should be used for each MS/MSD pair.

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _	_X	_
Criteria were not met		
and/or see below		

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

LCS ID COMPOUND % R QC LIMIT

__Recoveries_within_laboratory_control_limits.______

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and

qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met Criteria were not met and/or see belowN/A
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 30% for aqueous samples, RPD ± 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION			
`								
			th this data package. MS					
to assess	precision		itory, generally acceptal	ole and g	juidance document			
performance criteria control limits.								

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	N/A
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
					- 5
					1200
				X	
				5500	
		200	-		
- /					
		C.			
					<u> </u>
	_ (1				
- 1					<u> </u>
1					

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO - 50%	IS AREA > + 100%
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _	X
Criteria were not met	
and/or see below	

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC33945-14MS

Ethanol

RF = 15.05

[] = (103120)/(15.05)

= 6,852 ppm OK

All criteria were met	_X_	_
Criteria were not met		
and/or see below		

XII.	OLIA	NTIT	ATION	LIMITS
AII.	GUE		α	

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
		P- 30
-		

Percent Solids
List samples which have ≤ 50 % solids

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$

MEMORANDUM

TO: Mr. Haley Royer

Anderson, Mulholland and Associates

DATE: January 26, 2017

FROM: R. Infante

: W

FILE: JC33945

RE:

Data Validation SDG: JC33945

SUMMARY

Full validation was performed on the data for two groundwater samples analyzed for dissolved methane by method RSK-175. The samples were collected at the Bristol Myer Squib-Building 5 Area, Humacao, PR site on December 14-15, 2016 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery groups (SDG) JC33945. The sample results were assessed according to USEPA general data validation guidance documents.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use.

SAMPLES

The samples included in the review are listed below

Client Sample ID	Lab. Sample ID Co Da		Matrix	Analysis	
S-43S	JC33945-1	12/15/16	Groundwater	Methane	
S-42S	JC33945-9	12/15/16	Groundwater	Methane	
MW-22S	JC33945-12	12/14/16	Groundwater	Methane	

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- Gas chromatography/mass spectrometry (GC/MS) tunes
- Initial and continuing calibrations
- Method blanks/trip blanks/field blank
- Canister cleaning certification criteria
- Surrogate spike recovery
- Internal standard performance and retention times
- Field duplicate results
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- Quantitation limits and sample results

DISCUSSION

e el 3

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody.

Holding Times and Sample Preservation

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

Initial and Continuing Calibrations

Initial and continuing calibrations meet method specific requirements. Initial calibration retention times meet method specific requirements.

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks.

No trip/field/equipment blank analyzed with this data package.

Laboratory/Field Duplicate Results

Field duplicates were analyzed as part of this data set. Target analytes meet the RPD performance criteria of \pm 25 % for analytes 5 x SQL.

LCS/LCSD Results

LCS (blank spike) was analyzed by the laboratory associated with this data package. Recoveries and RPD within laboratory control limits.

Quantitation Limits and Sample Results

Dilutions performed:

- sample JC33945-1 diluted 100 x
- sample JC33945-9 diluted 20 x

Calculations were spot checked.

Summary

Samples JC33945-1; JC33945-9; and JC33945-12 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document.

Rafael Infante

Chemist License 1888

SAMPLE METHANE DATA SAMPLE SUMMARY

Sample ID: JC33945-1

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16

Matrix: Groundwater

METHOD: RSK -175

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable Methane 4630 ug/l 100 - Yes

Sample ID: JC33945-9

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16

Matrix: Groundwater

METHOD: RSK-175

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Methane 976 ug/l 20 - Yes

Sample ID: JC33945-12

Sample location: BMSMC Building 5 Area

Sampling date: 14-Dec-16

Matrix: Groundwater

METHOD: RSK-175

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable Methane 6.1 ug/l 1 - - Yes

MEMORANDUM

TO: Mr. Haley Royer

Haley Royer DATE: January 27, 2017

Anderson, Mulholland and Associates

FROM: R. Infante

FILE: JC33945

RE:

Data Validation

BMSMC, Building 5 Area

SM04.00.06/4th Quarter 2016 GW Sampling - Onsite Wells

Accutest Job Numbers: JC33945

SUMMARY

Full validation was performed on the data for three (3) groundwater samples analyzed selected inorganics (iron - ferric and ferrous; nitate-nitrogen; nitrite-nitrogen; nitrate + nitrite - nitrogen; sulfate and sulfide). The methods employed are listed in Table 1. The samples were collected at the BMSMC, Building 5 Area, Humaco, PR site on December 14-15, 2016 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery groups (SDG) JC33945.

Table 1.

ANALYTE	METHOD	ANALYTE	METHOD
Iron, ferrica	SM3500FE B-11	Iron, ferrous ^b	SM3500FE B-11
Nitrogen, nitrate	EPA353.2/SM4500NO2B	Nitrogen, nitrate + nitrite	EPA352.2/LACHAT
Nitrogen, nitrite	SM4500NO2 B-11	Sulfate	EPA 300/SW846-9056A
Sulfide	SM4500S2-F-11		

(a) Calculated as: (Iron) - (Iron, Ferrous)

(b) Field analysis required. Received out of hold time and analyzed by request.

(c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Contract Laboratory program National Functional Guidelines for Inorganic data Review (OSWER 9240.1-45, EPA 540-R-04-004, October 2004- Final), (noted herein as the "primary guidance document"). Also, QC criteria from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update IV, December 1998)," and the QC requirements for the methods performed following the Standard Method guidelines are utilized. The guidelines were modified to accommodate the non-CLP methodology. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data are valid as reported and may be used for decision making purposes. The data results are acceptable for use; some of the results were qualified. Results for ferrous and ferric iron were qualified as estimated (J) in samples: JC33945-1; -9; and -12. Results for Nitrate + Nitrite Nitrogen qualified as estimated (J) in samples: JC33945-1. Results for Nitrite qualified as estimated (J or UJ) in samples JC33945-1; -9; and -12.

SAMPLES

The samples included in the review are listed below

FIELD SAMPLE ID	LABORATORY ID	ANALYSIS
S-43S	JC33945-1	See Table 1
S-42S	JC33945-9	See Table 1
MW-22S	JC33945-12	See Table 1

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- Holding time and sample preservation
- o Initial and continuing calibrations
- Method blanks/trip blanks/field blank
- Surrogate spike recovery
- Matrix spike/matrix spike duplicate (MS/MSD) results
- o Internal standard performance
- Field duplicate results
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- Quantitation limits and sample results

DISCUSSION

Agreement of Analysis_Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

The cooler temperatures were within the QC acceptance criteria of $4^{\circ}C \pm 2^{\circ}C$.

Sample preservation was acceptable.

Samples analyzed within method recommended holding time except for the following:

- JC33945-1 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.
- JC33945-9 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.
- JC33945-12 for Iron, Ferrous: Field analysis required. Received out of hold time and analyzed by request.
- Nitrite analysis done past holding time. The samples were received and analyzed out of holding time.

Note: Results for ferrous and ferric iron qualified as estimated (J). Results for Nitrite qualified as estimated (J).

Initial and Continuing Calibrations

Initial and continuing calibration meets method performance criteria.

Method Blank/Equipment Blank/Field Blank

Target analytes were not detected in laboratory method blanks above the reporting limit.

No field/equipment blanks analyzed as part of this data package.

MS/MSD

Matrix spike was performed. Recoveries for MS/MSD were within laboratory control limits except for the cases described in this document; RPD for MS/MSD were within control limits.

 MS recovery for Nitrate + Nitrite Nitrogen in sample JC33945-1 outside laboratory control limits (85.0 %); control limits: 90 - 110 %. Results for Nitrate + Nitrite Nitrogen qualified as estimated (J or UJ) in affected sample.

Field/Laboratory Duplicate Results

Field/laboratory duplicate were analyzed as part of this data set. When no field/laboratory duplicates were analyzed, MS/MSD RPD was used to assess precision. RPD results were within laboratory/recommended control limits except for the following:

• JC33648-2/-2 DUP.: Sulfide- 37.6 % RPD, outside laboratory control limit. No action taken. Low sample and duplicate concentration; < 5 x IDL. QC sample from another job.

LCS/LCSD Results

The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits.

Quantitation Limits and Sample Results

Dilutions were not required with this data set.

Calculations were spot checked.

<u>Summary</u>

The following samples JC33945-1; JC33945-9; and JC33945-12 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. Some of the results were qualified, the results are valid.

Rafael Infante

Chemist License 1888

SAMPLE INORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33945-1

Sample location: BMSMC Building 5 Area

Sampling date: 12/15/2016

Matrix: Groundwater

Analyte Name	Method	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Fe	SW846-6010C	8470	ug/l	1.0	*	-	Yes
Mn	SW846-6010C	359	ug/l	1.0	-	-	Yes
Alkalinity, Total as CaCO3	SM2320 B-11	99.2	mg/l	1.0	-		Yes
Iron, ferric	SM3500FE B-11	7.5	mg/l	1.0	-	J	Yes
Iron, ferrous	SM3500FE B-11	1.00	mg/l	1.0	-	J	Yes
Nitrogen, nitrate	EPA 353.2/SM4500NO2B	0.14	mg/l	1.0	-	-	Yes
Nitrogen, nitrate + nitrite	EPA 353.2/LACHAT	0.14	mg/l	1.0	-	J	Yes
Nitrogen, nitrite	SM4500NO2 B-11	< 0.010	mg/l	1.0	-	UJ 🗸	Yes
Sulfate	EPA 300/SW846 9056A	< 10	mg/l	1.0	•	U	Yes
Sulfide	SM4500S2- F-11	< 2.0	mg/l	1.0	-	U	Yes

Sample ID: JC33945-9

Sample location: BMSMC Building 5 Area Sampling date: 12/15/2016

Matrix: Groundwater

Analyte Name	Method	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Fe	SW846-6010C	5760	ug/l	1.0	-	-	Yes
Mn	SW846-6010C	588	ug/l	1.0	-	•	Yes
Alkalinity, Total as CaCO3	SM2320 B-11	312	mg/l	1.0	-	-	Yes
Iron, ferric	SM3500FE B-11	5.6	mg/l	1.0	-	J	Yes
Iron, ferrous	SM3500FE B-11	0.21	mg/l	1.0	-	J	Yes
Nitrogen, nitrate	EPA 353.2/SM4500NO2B	0.13	mg/l	1.0	-	-	Yes
Nitrogen, nitrate + nitrite	EPA 353.2/LACHAT	0.13	mg/l	1.0	-	-	Yes
Nitrogen, nitrite	SM4500NO2 B-11	< 0.010	mg/l	1.0	-	UJ 🗸	Yes
Sulfate	EPA 300/SW846 9056A	< 10	mg/l	1.0	-	U	Yes
Sulfide	SM4500S2- F-11	< 2.0	mg/l	1.0	-	U	Yes

Sample ID: JC33945-12

Sample location: BMSMC Building 5 Area
Sampling date: 12/14/2016

Matrix: Groundwater

Analyte Name	Method	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Fe	SW846-6010C	165	ug/l	1.0	-	-	Yes
Mn	SW846-6010C	2400	ug/l	1.0	-	-	Yes
Alkalinity, Total as CaCO3	SM2320 B-11	186	mg/l	1.0	-	-	Yes
Iron, ferric	SM3500FE B-11	< 0.20	mg/l	1.0	-	OJ. <	Yes
Iron, ferrous	SM3500FE B-11	< 0.11	mg/l	1.0	-	UJ	Yes
Nitrogen, nitrate	EPA 353.2/SM4500NO2B	< 0.10	mg/l	1.0	-	U	Yes
Nitrogen, nitrate + nitrite	EPA 353.2/LACHAT	<0.10	mg/l	1.0	-	U	Yes
Nitrogen, nitrite	SM4500NO2 B-11	< 0.010	mg/l	1.0	-		Yes
Sulfate	EPA 300/SW846 9056A	< 10	mg/l	1.0	-	U	Yes
Sulfide	SM4500S2- F-11	< 2.0	mg/l	1.0		U	Yes

						_	
Type of valid	dation	Full:X Limited:		t Number: 12/14-1			
		EPA Region:2_		12/14-1 shipped:1			
				010 0 4 7 4 0	4014405		
	RE	VIEW OF INORGAN	IIC ANALY	SIS DATAP	ACKAGE		
sulfide, and assist the reserving the validation g Section SO: Laboratory 45, EPA 54 Program (Covalidation of Methods Strinformation)	/or cyanide eviewer in u needs of the uidance doo P NO. HW-3 program Na AO-R-O4-004 CLP) (SOP riteria were of W-846 (Final (if available)	es for evaluating maker created to delicating professional judge data users. The sare turnents in the followed by Revision 0 (July 20 attional Functional Guld, October 2004- Fir HW-2, Revision 13. derived from "Test Mail Update IV, 1998)" b). The QC criteria are primary guidance designed.	neate requi Igment to reputs ving order (2015) ISMO2 videlines for videlines for viethods for viethods for viethods for viethods for viethods viethods vieth	ired validationake more in swere assess of precedence ICP-MS Date Inorganic dation of Metan ILM05.3 (AEvaluating Sect QAPP is alidation actionation actionation actionation actionationactics	on actions. Informed de seed accorde: Hazarde la Validation lata Review la for the Caugust 200 olid Waste, reviewed ons listed de la constitution.	This dod cision ar ling to Usous Was n; USEP v (OSWE Contract 19). Qua Physica for proje	cument will ad in better SEPA data at a Support A Contract ER 9240.1 Laboratory lity controll/Chemica ect specific
The hardco reviewed a inorganic in	nd the qua	ratory name) _Accu lity control and pe	itest rformance	data data summ	package re arized. Th	eceived e data	has beer review for
No. of Samp Field blank Equipment I	oles: No.: blank No.:	JC33945 3 	_	Sample ma		-	water
XHo	ata deliverat olding Times alibrations anks P Interferen atrix Spike/N		e	X F	aboratory Field Duplic aboratory (CP Serial D Detection Li Sample Qua	ates Control S Vilution R mits Res	Samples lesults sults
Overall Con	nments: _Fe	e_and_Mn_(SW846-6	6010C)				
First State	1,01976 0107 02	9 3 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
						123	
Definition of	Qualifiers:						
U- Cor R- Rej UJ- Esti	imated resul npound not ected data imated non- oratory qual	detected detect					
Reviewer:_	Rafa	ul defaut _			Date:	01/27/20	017

					All criteria were met _ Criteria were not met and/or see below	:
i.	DATA [DELIVERABLES	;			
	A.	Data Package:				
MISSIN	NG INFO	RMATION	DATE LAB. CONT	ACTED	DATE RECE	IVED
		<u> </u>				
\$b	R/ST 2 P ES					
	В	Other Discrepa	ncies:			
(Application						
					10	
		¥	(Water-)		— 74 14	
•						
	-					
						1200 TVV - 1100 TV

All criteria were metX	
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of preparation, and subsequently from the time of preparation to the time of analysis.

Complete table for all samples and circle the analysis date for samples not within criteria

SAMPLE ID	DATE SAMPLED	CYANIDE DATE ANALYSIS	Hg DATE ANALYSIS	OTHERS DATE ANALYSIS	рН	SULFIDE	ACTION
SAMPLES D	 PIGESTED AN	D ANALYZE	D WITHIN T	HE METHO	D REC	OMMENDE	ED HOLDING

<u>Criteria</u>

Metals – 180 days from time of collection.
Mercury – 28 days from time of collection.
Hexavalent Chromium (solids)- 30/7 from day of collection, 48 hrs aqueous samples
Cyanide – 14 days from time of collection
Sulfide - 14 days from time of collection
pH measurements of aqueous samples upon receipt at the laboratory (criteria pH ≤ 2 for metals
pH ≥ 12 for cyanide)

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and rejects nondetects (R)
If pH > 2 for metals or pH < 12 for cyanide, positive results (J) and nondetects (UJ).
Cooler Temperature (Criteria: 4°C + 2°C):5.3°C
If cooler temperature is > 10°C, flag non-detects as (UJ) and detects as (J).

All criteria were met	N/A
Criteria were not me	t
and/or see below	

ICP-MS TUNE ANALYSIS

Is the ICP-MS tuned prior to calibration?

Yes or No?

Does the % RSD exceeds 5% for any isotope in the tuning solution?

Yes or No?

Action:

NOTES: For ICP-MS tunes that do not meet the technical criteria, apply the action to all samples reported from the analytical run.

- 1. If the ICP-MS instrument was not tuned prior to calibration, the sample data should be qualified as unusable (R).
- 2. If the tuning solution was not analyzed or scanned at least 5x consecutively or the tuning solution does not contain the required analytes spanning the analytical range, the reviewer should use professional judgment to determine if the associated sample data should be qualified. The reviewer may need to obtain additional information from the laboratory. The situation should be recorded in the Data Review Narrative and noted for Contract Laboratory Program Project Officer (CLP PO) action.
- 3. If the resolution of the mass calibration is not within 0.1 u for any isotope in the tuning solution, qualify all analyte results that are ≥ Method Detection Limit (MDL) associated with that isotope as estimated (J), and all non-detects associated with that isotope as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action.
- 4. If the %RSD exceeds 5% for any isotope in the tuning solution, qualify all sample results that are ≥ MDL associated with that tune as estimated (J), and all non-detects associated with that tune as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action.

Table 2. ICP-MS Tune Actions for ICP-MS Analysis

ICP-MS Tune Results	Action for Samples
Tune not performed	Qualify all results as unusable (R)
Tune not performed properly	Use professional judgment
Resolution of mass calibration not within 0.1u	Qualify results that are ≥ MDL as estimated (J)
	Qualify non-detects as estimated (UJ)
% RSD > 5%	Qualify results that are ≥ MDL as estimated (J)
	Qualify non-detects as estimated (UJ)

Note: Analytes (As) analyzed by SW846-6010 – no tuning necessary.

All criteria were met	_X
Criteria were not met	
and/or see below	_

INSTRUMENT CALIBRATION (SECTION 1)

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. Minimum of 2 calibration points for ICP-AES and ICP-MS; 5 points for Hg; and 4 points for cyanide. One initial calibration standard at the CRQL level for cyanide and Hg. If no, write in the non-compliance section of the data review narrative.

List the analytes which did not meet the percent recovery (%R) criteria for Initial or Continuing Calibration Verification standards (ICV or CCV).

Acceptance Criteria	ICV %R	CCV %R
Metals by 6010C/6020	100 + 10%	100 ÷ 10%
Mercury/Metals by 7000s	100 + 10%	100 ÷ 20%
Cyanide	100 + 15%	100 ÷ 15%
Sulfide	100 + 15%	100 ÷ 15%

DATE	ICV/CCV#	ANALYTE	%R	ACTION	SAMPLES AFFECTED
INIT	IAL AND CONTI	NUING CALIBRA	ATION M	LEET METHOD SPEC	IFIC CRITERIA

ACTIONS: If any analyte does not meet the %R criteria, follow the actions stated below. Qualify five samples on either side of the ICV/CCV out of control limit.

Estimate positive results (J) if: Metals by 6010C/6020 Mercury/Metals by 7000s Cyanide Sulfide	ICV 111 – 125% 111 – 125% 116 – 130% 116 – 130%	CCV 111 – 125% 111 – 135% 116 – 130% 116 – 130%
Estimate positive results and nondetects (L Metals by 6010C/6020 Mercury/Metals by 7000s Cyanide Sulfide	I/UJ) if: 75 – 89% 75 – 89% 70 – 84% 70 – 84%	75 - 89% 65 - 79% 70 - 84% 70 - 84%
Reject positive results and nondetects (R) i Metals by 6010C/6020 Mercury/Metals by 7000s Cyanide Sulfide	f: <75%, >125% <75%, >125% <70%, >130% <70%, >130%	<75%, >125% <65%, >135% <70%, >130% <70%, >130%

All criteria were met __X__ Criteria were not met and/or see below ____

- III. INSTRUMENT CALIBRATIONS (SECTIONS 2 & 3)
- 2. Analytical Sequence

Did the laboratory use the proper number of standards for calibration as described in the method?

Yes or No

B. Were calibrations performed at the beginning of each analysis?

Yes or No

Were calibration verification standards analyzed at the beginning of sample analysis and the proper frequency according to the method?

Yes_or No

D. Where the AA correlation coefficients (r) for the calibration curves
 ≥ 0.995? If r < 0.995, estimate positive results and nondetects (J/UJ).
 It is not necessary to qualify results if the laboratory used order regression.

Yes or No

Data quality may be affected if any of the above answer are "no". Use professional judgment to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the sample affected.

Other Check Standards

Laboratories may analyze an additional check standard after establishing the calibration curve. This standard may contain low level concentrations of target analytes and be analyzed and evaluated by the laboratory similar to a CLP "CRLD" standard (CRI for ICP, CRA for AA, and/or mid-range standard for CN and Sulfide). A $100 \pm 20\%$ recovery acceptance limit should be used by the validator to evaluate the standard.

ACTIONS: If any analyte does not meet the %R criteria, follow the action needed below. Qualify 50% of either side of the CRI/CRA out of control limits.

% R		%R < 50%	%R	=	50-	%R	=	121-	%R	>	Affecte	ed Ra	nge
			79%			150%			150%				
Qualify Positiv	/e/No	ondetects Res	ults										
Metals 6010C/6020	by	R/R	J/UJ			J/A			R/A		<2x CI	₹I coi	nc.
Hg/metals 7000s	by	R/R	J/UJ		Î	J/A			R/A		<1.5x conc.		CRI
Cyanide		R/R	J/UJ			J/A			R/A		<1.5x conc.	mid	std.
Sulfide		R/R	J/UJ			J/A			R/A		<1.5x conc.	mid	std.

CRI is not required for AI, Ba, Ca, Fe, Mg, Na, and K.

NOTE: CRLD standard within laboratory and method specific criteria.

All criteria were met	N/A
Criteria were	not met
and/or see below	

Table 4. Calibration Actions for ICP-MS Analysis

Calibration Result	Action for Samples
Calibration not performed	Qualify all results as unusable (R)
Calibration incomplete	Use professional judgment
	Qualify results that are ≥ MDL as estimated
	(J)
	Qualify non-detects as estimated (UJ)
Not at least one calibration standard at or	Qualify results that are ≥ MDL but < 2x the
below the CRQL for each analyte	CRQL as estimated (J)
	Qualify non-detects as estimated (UJ)
Correlation coefficient < 0.995; %D outside	Qualify results that are ≥ MDL as estimated
±30%; y-intercept ≥ CRQL	(J)
	Qualify non-detects as estimated (UJ)
Correlation coefficient < 0.990	Qualify results that are ≥ MDL as estimated
	(J)
	Qualify non-detects as unusable (R)
ICV/CCV %R < 75%	Qualify results that are ≥ MDL as unusable
	(R)
	Qualify all non-detects as unusable (R)
ICV/CCV %R 75-89%	Qualify results that are ≥ MDL as estimated
	low (J-)
	Qualify non-detects as estimated (UJ)
ICV/CCV %R 111-125%	Qualify results that are ≥ MDL as estimated
	high (J+)
ICV/CCV %R > 125%	Qualify results that are ≥ MDL as estimated
	high (J+)
ICV/CCV %R > 160%	Qualify results that are ≥ MDL as unusable
	(R)

All criteria were metX Criteria were not met and/or see below
existence and magnitude of

IV. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including equipment, field, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in Sections 1 & 2 below. A separate worksheet page should be used for soil and water blanks.

Laboratory blanks			Matrix:Aque	leous	
DATE ANALYZED	ICB/CCB#	PREP BLK	ANALYTE	CONCENTRATION UNITS	
			_above_reporting_limits		
Field/Equipment			Matrix:Aque	eous	
DATE ANALYZED	EQUIPMENT BLANK	T/FIELD	ANALYTE	CONCENTRATION UNITS	
No_field/equipn		• – –	part_of_this_data_package.		

Table. Field/Rinsate/Trip Blank Actions for ICP-MS Analysis

Blank Result	Sample Result	Action for Samples
> CRQL	≥ MDL but ≤ CRQL	Report CRQL value with a "U"
	> CRQL but < Blank Result	Report at level of Blank Result with a "U"
	> Blank Result but < 10x th Blank Result	e Use professional judgment to qualify results as estimated (J)

		All criteria were metX Criteria were not met and/or see below
IV.	BLANK ANALYSIS RESULTS (Section 3)	
Freque	ency requirements	
at the f	ne preparation blank analyzed for each matrix, frequency of the method? estimate positive results < 10x IDL for which preparation blank we than 20 samples/batch, qualification begins at the 21st sample.	Yes or No as not analyzed.
B.	Was an ICB analyzed?	Yes or No
C.	Was a CCB analyzed at the frequency stated in the method?	Yes or No
determ	uality may be affected if any of the above answer is "no". Us ine the severity of the effect and qualify the data accordingly. t the samples affected.	
Compa	FOR SOIL SAMPLES are raw sample value with blank results in ug/L unit, or the blanks analyzed during a soil case to mg/Kg in order to com.	pare them with the sample
	In ug/L x [Volume diluted to (mL)]/[Weight digested] x 1L/1000 column = concentration in wet weight (mg/Kg)	mL x 1000g/1Kg x
Conce	ntration, dry weight (mg/Kg) = (Wet weight concentration)/(% Sc	olids) x 100
BLANK	(ANALYSIS RESULTS (Sections 4,5)	
sample	ntamination remaining in the field or equipment blank will be us	

			All criteria were n Criteria w and/or see be	ere not met
4. Initia	al/Continuing Cali	bration Blanks (ICB/C	CB) Actions	
Are all ICB/C	CCBs less than th	e SQL?	Yes or No	
		either side of the ICB/0 the ICB/CCB value.	CCB out of control limits.	
ICB/CCB#	ANALYTE	CONC/UNITS	SAMPLES AFFECTED	
				_
				_
Are the PB le	ess than the SQL	?	Yes or No	_
If yes, reject	all results (R) < 1	Ox the PB value.		
РВ	ANALYTE	CONC/UNITS	SAMPLES AFFECTED	
				_
				<u>-</u>
BLANK ANA	LYSIS RESULTS	S (Section 6)		
		k (FB/EB) Actions		
	the FB/EB less th	,	Yes or No	N/A
If no, was the	e FB/EB value al	ready rejected due to c	other QC criteria? Yes or No	
If no, reject (the FB/EB va		s <_5x the FB/EB valu	e. Reject soil data with raw digest r	esults < 5x
PB	ANALYTE	CONC/UNITS	SAMPLES AFFECTED	
				_
				_

All criteria were metN/A
Criteria were not met
and/or see below

Table 5. Calibration/Preparation Blank Actions for ICP-MS Analysis - Summary

Blank Type	Blank Result	Sample Result	Action for Samples	
ICB/CCB	≥ MDL but ≤ CRQL	Non-detect	No action	
≥ MDL but ≤ CRQL	1	Report CRQL value with	a "U"	
> CRQL		Use professional judgme	ent	
ICB/CCB	> CRQL	≥ MDL but ≤ CRQL	Report CRQL value with a "U"	
> CRQL but < Blank Res	sult	Report at level of Blank	Result with a "U"	
> Blank Result		Use professional judgme	ent	
ICB/CCB	≤ (-MDL) but ≥ (-CRQL)	≥ MDL, or non-detect	Use professional judgment	
ICB/CCB	< (-CRQL)	< 10x the CRQL	Qualify results that are ≥ CRQL as estimated low (J-)	
			Qualify non-detects as estimated (UJ)	
Preparation Blank	> CRQL	≥ MDL but ≤ CRQL	Report CRQL value with a "U"	
> CRQL but < 10x the Blank Result		Qualify results as estima	ated high (J+)	
≥ 10x the Blank Result		No action		
Preparation Blank	≥ MDL but ≤ CRQL	Non-detect	No action	
≥ MDL but ≤ CRQL		Report CRQL value with a "U"		
> CRQL		Use professional judgment		
Preparation Blank	< (-CRQL)	< 10x the CRQL	Qualify results that are ≥ CRQL as estimated low (J-)	
			Qualify non-detects as estimated (UJ)	

				Crite	vere metX eria were not met see below
INDUCTIVELY CO	OUPLED PLAS	SMA (ICP) INTER	RFERENCE CHEC	K SAMPLE	
The assessment interelement and b			ck sample (ICS)	is to verify	the laboratory's
1. Recovery	Criteria				
List any elements %).	in the ICS AB	and ICS A soluti	ons which did not	meet the %R	criteria (80 – 120
DATE E	LEMENT	%R ACTION	I SAMPLES	SAFFECTED	
_Interference_che	ck_sample_wi	thin_method_pe	rformance_criteria		
	·				
ACTIONS: If an element does % R	s not meet the	%R = 50-	%R = 121-	%R >]
Qualify Positive/No	ondetects Res	79% ults	150%	150%	
Metals by 6010C/6020	R/R	7/01	J/A	R/A	
2. Frequency	y requirements	3			
Were interference (beginning of the a			ncy stated in the m		s or No
If no, <u>ACTIONS:</u> Estima	te positive res	ults (J) all sample	es for which Al, Ca	a, Fe, Mg > IC	S value.
The data may be qualify the data ac	affected. Use cordingly. Disc	professional judg cuss any actions	gment to determine below and list the	e the severity samples affec	of the effect and sted.
	77000				

		100	g: 6)v):		
	4	- 8			

All criteria were metN/A	
Criteria were not n	net
and/or see below	

Table 6. Interference Check Actions for ICP-MS Analysis - Summary

Interference Check Sample Results	Action for Samples
ICS not analyzed	Qualify detects and non-detects as unusable (R)
ICS not analyzed in proper sequence	Use professional judgment.
ICS %R>150%	Use professional judgment
ICS %R > 120% (or greater than true value + 2x the CRQL)	Qualify results that are ≥ MDL as estimated high (J+)
ICS %R 80-12-%	No qualification
ICS %R 50-79% (or less than true value – 2x the CRQL)	Qualify results that are ≥ MDL as estimated low (J-)
	Qualify non-detects as estimated (UJ)
ICSAB %R < 50%	Qualify detects as estimated low (J-) and non- detects as unusable (R)
Potential false positives in field samples with interferents	Qualify results that are ≥ MDL as estimated high (J+)
Potential false negatives in field samples with interferents	Qualify results that are ≥ MDL but < 10x the (negative value) as estimated low (J-) Qualify non-detects as estimated (UJ)

			Crite	ria were	X_ e not met w
VI.:	MATRIX SPIKE (MS)				
Sample	#_JC33925-1MS/-1MSD	Matrix:Groundwater	-	Units: _	_ug/L
This da	ta is generated to determine long term n	recision and accuracy in t	he anal	vtical me	ethod for

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. Note that for Region 2, MS not required for: Ca, Mg, K, and Na for aqueous matrix.

Al, Ca, Fe, Mg, K, Na, for soil matrix

MS Recovery Criteria. List the percent recoveries for analytes which did not meet the %R criteria (75 – 125%); (85 – 115 % FOR Cr (VI)).

ANALYTE	SPIKE SAMPLE	SAMPLE	SPIKE	% R	ACTION
	RESULT (SSR)				
	MS/MSD rec	overies and RPD	within labor	ratory c	ontrol limits.
					-

ACTIONS: Matrix spike actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate.

If the sample results \geq 4x the spike concentration, no action is taken. If any analyte does not meet the %R criteria, follow the actions stated below.

Table 9. Spike Sample Actions for ICP-MS Analysis

Spike Sample Results	Action for Samples
Matrix Spike %R < 30% Post-digestion spike %R < 75%	Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R)
Matrix Spike %R < 30% Post-digestion spike %R ≥ 75%	Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ)
Matrix Spike %R 30-74% Post-digestion Spike %R < 75%	Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as estimated (UJ)
Matrix Spike %R 30-74% Post-digestion spike %R ≥ 75%	Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ)
Matrix Spike %R > 125% Post-digestion spike %R > 125%	Qualify affected results that are ≥ MDL as estimated high (J+)
Matrix Spike %R > 125% Post-digestion spike %R ≤ 125%	Qualify affected results that are ≥ MDL as estimated (J)

Spike Sample Results	Action for Samples
Matrix Spike %R < 30% No post-digestion spike performed	Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R)
Matrix Spike %R 30-74% No post-digestion spike performed	Qualify affected results that are ≥ MDL as estimated low (J-) and non-detects as estimated (UJ)
Matrix Spike %R > 125% No post-digestion spike performed	Qualify affected results that are ≥ MDL as estimated high (J+) Non-detects are not qualified

2. Frequency Criteria

A. Was a matrix spike prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for which analyte was not spiked. If more than 20 samples/batch, qualification begins at the 21st sample.

B. Was a field blank used as spiked sample? If yes, estimate positive results (J) < 4x spike level added for the analyte.

Yes or No

A separate worksheet page should be used for each matrix spike

	A	Il criteria were metN/A Criteria were not met
VII. FIELD DUPLICATES		and/or see below
Sample #:	Matrix:	Units:_ug/L

Field duplicate samples may be taken and analyzed as an indication of overall precision. Field duplicate analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measure only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

List the concentrations and RPDs in the field duplicate pair. RPD criteria: \pm 20% for aqueous; \pm 35% for soil. For soil duplicates, if the % solids for the sample and its duplicate differ by more than 1%, report concentrations in ug/L and calculate RPD or difference for each analyte.

ANALYTE	SQL ug/L	SQL ug/Kg	SAMPLE RESULTS	DUPLICATE RESULTS	RPD	ACTION
Al						
Sb						
As						MSD % recoveries RPD erally acceptable control
Ва			1			1
Be						
Cd						
Ca						
Cr						İ
Co						
Cu						
Fe						
Pb						i
Mg						
Mn		İ				
Hg						
Ni						
K						
Se						
Ag						
Na						
TI						
V						
Zn						
Cyanide						
Cr(VI)						

Field duplicate actions should be applied to only the sample and its duplicate.

All criteria were metN/A	_
Criteria were not me	et
and/or see below	

<u>Actions:</u> Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are nondetects, the RPD is not calculated (NC), no action is needed.

Table 8. Duplicate Sample Actions for ICP-MS Analysis

Duplicate Sample Results	Action for Samples
Aqueous: Both original sample and duplicate sample > 5x the CRQL and 20% < RPD < 100%	Qualify those results that are ≥ CRQL as estimated (J)
Aqueous: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 100%	Qualify those results that are ≥ CRQL as unusable (R)
Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and 35% < RPD < 120%	Qualify those results that are ≥ CRQL as estimated (J)
Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 120%	Qualify those results that are ≥ CRQL as unusable (R)
Original sample or duplicate sample ≤ 5x the CRQL (including non-detects) and absolute difference between sample and duplicate > CRQL	Qualify those results that are ≥ MDL as estimated (J) and non-detects as estimated (UJ)

A separate worksheet page should be used for each laboratory duplicate analysis

	All criteria were metX Criteria were not met and/or see below	ŀ
VIII	LABORATORY DUPLICATES (Section 1)	
measu	tory run duplicates samples to verify laboratory consistency and precision. They are a re of laboratory performance. It is also expected that soil duplicate results will have a variance than water matrices due to difficulties associated with collecting identical field	ì

1. Difference Criteria

duplicate samples.

List the concentrations of any analyte not meeting the RPD criteria (\pm 20% for aqueous; \pm 35% for soil). For soil duplicates, if the % solids for the sample and its duplicate differ by more than 1%, report concentrations in \Box g/L and calculate RPD or difference for each analyte.

Sample #	Matrix:	Units:

ANALYTE	SQL ug/L	SQL mg/Kg	SAMPLE RESULTS	DUPLICATE RESULTS	RPD	ACTION
Al						
Sb						
As						
Ва						
Be						
Cd						
Ca						
Ca Cr						
Со						
Cu						
Fe						
Pb						
Mg						
Mn						
Hg						
Ni						
K						
Se						
Ag		-				
Na						
Τĺ						
٧						
Zn						
Cr(VI)						
Sulfide						
Cyanide						

Note:

Laboratory duplicates actions should be applied to all other samples of the same matrix type. This qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate.

All criteria were met __N/A__ Criteria were not met and/or see below ____

Actions: Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are non-detects, the RPD is not calculated (NC), no action is needed.

Table 8. Field Duplicate Sample Actions for ICP-MS Analysis

Sample Type	Field Duplicate Result	Action for Samples	
Aqueous	Sample and its field duplicate ≥ 5x the CRQL and RPD > 20%	Qualify sample and its duplicate as estimated (J)	
	Sample and/or its field duplicate < 5x the CRQL and absolute difference > the CRQL	Qualify results > the MDL as estimated (J) Qualify non-detects as estimated (UJ)	
Soil/Sediment	Sample and its field duplicate ≥ 5x the CRQL and RPD > 50%	Qualify sample and its duplicate as estimated (J)	
	Sample and/or its field duplicate < 5x the CRQL and absolute difference > 2x the CRQL	Qualify results > the MDL as estimated (J)	
		Qualify non-detects as estimated (UJ)	

2. Frequency Criteria

A. Was a laboratory duplicate prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for the analyte which duplicate was not performed. If more than 20 samples/batch, qualification begins at the 21st sample.

B. Was a field blank used for laboratory duplicate analysis? Yes or No

If yes, estimate positive results (J) for the analyte if field blank was used for duplicate analysis.

All criteria were metX
Criteria were not met
and/or see below

IX. LABORATORY CONTROL SAMPLE (LCS/LCSD)

The assessment of the LCSs is to determine both intralaboratory contamination and matrix specific precision and accuracy. Note that for Region 2, LCS is not required for aqueous Hg and Cyanide.

LCS Recoveries Criteria

A. Aqueous LCS/Solid LCS

List any LCS recoveries not within %R criteria (80 – 120%) and the samples affected.

DATE	ELEMENT	% R	ACTION	SAMPLES AFFECTED
Recoveries	_within_laboratory_co	ntrol_limits_		
			-	87.701
0.303			18	

ACTIONS: If analyte does not meet the %R criteria, follow the actions stated below:

Table 7. LCS Actions for ICP-MS Analysis

LCS Result	Action for Samples
%R 40-69%	Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as estimated (UJ)
%R > 130%	Qualify results that are ≥ MDL as estimated high (J+)
%R 70-130%	No qualification
%R < 40%	Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as unusable (R)
%R > 150%	Qualify detects as unusable (R); non- detects no qualification

All criteria were met	X
Criteria were	not me
and/or see belov	v

2. Frequency Criteria

A. Was a laboratory control sample prepared at the frequency stated in the method (1/20)? Yes_or No

If no, estimate positive results (J) for the analyte if LCS was not performed.

If more than 20 samples/batch, qualification begins at the 21st sample.

						,	All criteria were metX Criteria were not met and/or see below	
X.	ICP SER	IAL DIL	UTION AN	IALYSIS (Se	ction 1)			
The assessment of the ICP serial dilution analysis is to determine the precision of the laboratory through a 5x dilution.								
1.	Percent Difference (%D) Criteria:							
sample	X Serial dilutions were performed for each matrix and results for the diluted samples analysis agreed within 10% of the undiluted analysis for the analyte concentrations ≤ 50x MDL.							
_	Serial	dilutions	s were	not perfo	rmed for t	the fo	llowing target analytes:	
for anal				med, but and L before dilut		did not	agree within 10% difference	
List the	%Ds for a	analytes	which did	not meet the	%D criteria (1	10%/100	9%)	
Sample	# _ JC33	925-1_		 	Matrix:Gro	undwate	er Units:_ug/L	
ANALY	TE	IDL	50x IDL	SAMPLE RESULTS	SERIAL DILUTION	%D	ACTION	
Al								
Sb								
As								
Ва								
Be								
Cd								
Ca								
Сг								
Co								
Cu								
Fe								
Pb								
Mg								
Mn								
Hg								
Ni								
K								
Se								

Note: Serial dilution within method performance criteria.

Ag Na

TI V Zn

All criteria were met	X
Criteria were	not met
and/or see below	V

ACTIONS: Actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate. Qualify only samples with raw results > 50x MDL.

Flag results with an (E) for elements exhibiting %D > 10%. Estimate (J) positive results > 50x MDL for elements that exhibited %D > 10 but < 100.

Reject (R) positive results > 50x MDL for elements which exhibited %D ≥ 100 %.

SERIAL DILUTION ANALYSIS (Section 2)

2. Frequency Criteria

A. Was a serial dilution analysis prepared as required by the method? Yes or No

If no, estimate positive results > 50x MDL (J) for the analyte which serial dilution analysis

If no, estimate positive results \geq 50x MDL (J) for the analyte which serial dilution analysis was not performed.

B. Was a field blank used for serial dilution analysis?

Yes or No

If yes, estimate positive results \geq 50x MDL (J) for the analyte if field blank was used for serial dilution analysis.

Table 10. Serial Dilution Actions for ICP-MS Analysis

Serial Dilution Result	Action for Samples			
Aqueous: Sample concentration > 50x MDL and 10% < %D < 100%	Qualify affected results whose raw data are > MDL as estimated (J)			
Aqueous: Sample concentration > 50x MDL and %D ≥ 100%	Qualify affected results whose raw data are > MDL as unusable (R)			
Soil/Sediment: Sample concentration > 50x MDL and 15% < %D < 120%	Qualify affected results whose raw data are > MDL as estimated (J)			
Soil/Sediment: Sample concentration > 50x MDL and %D ≥ 120%	Qualify affected results whose raw data are > MDL as unusable (R)			
Interferences present	Use professional judgment			

A separate worksheet page should be used for each serial dilution analysis.

	All Crite	na were metn/A
		Criteria were not met
	a	nd/or see below
XI.	ICP-MS INTERNAL STANDARDS	
	Are internal standard added to the sample?	Yes_or No?
	Are the proper number of internal standard added to the sample?	Yes or No?
	Is the % Relative Intensities for all internal standards in a sample is	
	response in the calibration blank?	Yes or No?
	Note: ICD OES internal attendands would relative internation with	hin the guidence
	Note:_ICP-OES_internal_standards_used;_relative_intensities_wit	mm_une_guidance_
	_document_performance_criteria	
		
		·

Action:

NOTE: Apply the action to the affected analytes for each sample that does not meet the internal standard criteria.

- 1. If no internal standards were analyzed with the run, the sample data should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP Project Officer (CLP PO) action.
- 2. If less than five of the required internal standards were analyzed with the run, or a target analyte(s) is (are) not associated to an internal standard, the sample data, or analyte data not associated to an internal standard should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP PO action.
- 3. If the % Relative Intensities for all internal standards in a sample is within 60-125% of the response in the calibration blank, the sample data should not be qualified.
- 4. If the %RI for an internal standard in a sample is not within the 60-125% limit, qualify the data for those analytes associated with the internal standard(s) outside the limit as follows:
 - a. If the sample was reanalyzed at a two-fold dilution with internal standard %RI within the limits, report the result of the diluted analysis without qualification. If the %RI of the diluted analysis was not within the 60-125% limit, report the results of the original undiluted analyses and qualify the data for all analytes that are ≥ Method Detection Limit (MDL) in the sample associated with the internal standard as estimated (UJ).
 - b. If the sample was not reanalyzed at a two-fold dilution, the reviewer should use professional judgment to determine the reliability of the data. The reviewer may determine that the results are estimated (J) or unusable (R).

Table 11. Internal Standard Actions for ICP-MS Analysis

Internal Standard Results	Action for Samples
No internal standards	Qualify all results as unusable (R)
< 5 of the required internal standards	Qualify all results as unusable (R)
Target analyte not associated with internal standard	Qualify all analyte results not associated with an internal standard as unusable (R)
% RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is between 60% and 125%	Do not qualify the data
% RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is outside the 60% to 125% limit	Qualify analytes associated with the failed internal standard that are ≥ MDL as estimated (J) and qualify associated non-detects as estimated (UJ)
Original sample not reanalyzed at 2-fold dilution	Use professional judgment Qualify sample results as estimated (J) or unusable ®

XII. DETECTION LIMITS RESULTS

The detection limit assessment is to verify that samples results are within instrument calibration range or linear range (ICP).

Instrument Detection Limits (IDL). Note IDL is not required for Cyanide.

- A. IDL/MDL (or lowest quantitation limit used) results were present and found to be allevels that meet the project objectives? Yes or No
- B. IDL/MDL (or lowest quantitation limit used) were not met for the following elements:
- 2. Reporting Requirements
- A. Were sample results on Form I (or equivalent) reported down to the IDL/MDL or lowest quantitation limit used for all analytes? Yes or No
- B. Were sample weights, volumes, and dilutions taken into account when reporting results (positive and nondetects)? Yes or No

If no, the reported results may be inaccurate. Request the laboratory resubmit the corrected data.

- 3. Sediment Sample Percent Solids (% solids):
- A. Were the % solids for any sediment samples < 50% but ≥ 10%? Yes or No If yes, estimate positive results and nondetects (J/UJ) if the % solids is 10-50%. List the affected samples:______
- B. Were the % solids for any sediment samples < 10%? Yes or No If yes, reject all results (R) if the % solid is < 10%. List the affected samples: N/A
- XI. TOTAL/DISSOLVED OR INORGANIC/TOTAL ANALYTES
- A. Were any analyses performed for dissolved as well as total analytes on the same sample(s)?

 Yes or No
- B. Were any analyses performed for inorganic as well as total analytes on the same sample(s)?

 Yes or No

If yes, compare the differences between dissolved (or inorganic) and total analyte concentrations. Compute each difference as a percent of the total analyte only when both of the following conditions are fulfilled:

- (1) The dissolved (or inorganic) concentration is greater than total concentration, and
- (2) greater than or equal to 5xMDL.

	All criteria were metN/A
	Criteria were not met
	and/or see below
C.	Is any dissolved (or inorganic) concentration greater than its total concentration by more than 20%? Yes or No
D.	Is any dissolved (or inorganic) concentration greater than its total concentration by more than 50%? Yes or No
	N: percent difference is greater than 20%, flag (J) both dissolved/inorganic and total trations as estimated. If the difference is more than 50%, reject (R) both the values.
XII.	SAMPLE QUANTITATION
The sa	mple quantitation evaluation is to verify laboratory quantitation results.
	Sample results fall within the linear range for ICP and within the calibration range for all arameters.
dilution	If samples results were beyond the linear range/calibration range of the instrument, were performed?
List the	affected samples/elements/dilution:
In the s	space below, please show a minimum of one sample calculation per method:
ICP/ICI	P-MS Computer printout
Hg/Met	als by AA
Hexava	alent Chromium
<u>Cyanid</u>	<u>e</u>
Others	
	I samples, the following equation may be necessary to convert raw data values reported in actual sample concentrations (mg/Kg):
Conc. i	n ug/L x <u>Volume diluted to, mL</u> x <u>1L</u> x <u>1000 q</u> x <u>1 mg</u> = concentration Weight digested, g 1000 mL 1 Kg 1000 mg in wet weight mg/Kg
In addit	tion the sample results are converted to dry weight by using the percent solid calculations:

Wet weight concentration x 100 = final concentration, dry weight (mg/Kg) % solids

OVERALL ASSESSMENT

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the QC criteria previously discussed.
- 2. Write a brief Data Review Narrative to give the user an indication of the analytical limitations of the data. Note any discrepancies between the data and the Sample Delivery Group (SDG) Narrative for Contract Laboratory Program Project Officer (CLP PO) action. If sufficient information on the intended use and required quality of the data is available, the reviewer should include an assessment of the data usability within the given context.
- 3. If any discrepancies are found, the laboratory may be contacted by the Region's designated representative to obtain additional information for resolution. If a discrepancy remains unresolved, the reviewer may determine that qualification of the data is warranted.

 		 - V

EXECUTIVE NARRATIVE

SDG No:

JC34340

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8081B

Number of Samples:

12

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Twelve (12) samples were analyzed for the TCL pesticides list following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision 0, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in the two columns. Final calibration verification not

included in data package. No action taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

January 28, 2017

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC33945-1

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	•	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/i	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16 Matrix: Groundwater

11110	D. 0001D					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	•	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	Ų	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	•	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	•	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1		U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16

Matrix: AQ - Equipment Blank

-						
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	•	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.021	ug/l	1	*	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 22-Dec-16

Matrix: AQ - Equipment Blank

IVICTII	OD. 0001B					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	12	U	Yes
alpha-BHC	0.011	ug/l	1	-	U	Yes
beta-BHC	0.011	ug/l	1		U	Yes
delta-BHC	0.011	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	-	U	Yes
alpha-Chlordane	0.011	ug/l	1	-	U	Yes
gamma-Chlordane	0.011	ug/l	1	-	U	Yes
Dieldrin	0.011	ug/l	1		U	Yes
4,4'-DDD	0.011	ug/l	1	-	U	Yes
4,4'-DDE	0.011	ug/l	1	-	U	Yes
4,4'-DDT	0.011	ug/l	1		U	Yes
Endrin	0.011	ug/l	1	-	U	Yes
Endosulfan sulfate	0.011	ug/l	1	-	U	Yes
Endrin aldehyde	0.011	ug/l	1	-	U	Yes
Endrin ketone	0.011	ug/l	1	-	U	Yes
Endosulfan-I	0.011	ug/l	1	-	U	Yes
Endosulfan-II	0.011	ug/l	1	-	U	Yes
Heptachlor	0.011	ug/l	1	-	U	Yes
Heptachlor epoxide	0.011	ug/l	1	-	Ų	Yes
Methoxychlor	0.022	ug/l	1	-	U	Yes
Toxaphene	0.28	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	•	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	0	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	2	U	Yes
Endrin aldehyde	0.010	ug/l	1		U	Yes
Endrin ketone	0.010	ug/l	1	0	U	Yes
Endosulfan-l	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample ID: JC33945-10

Sample location: BMSMC Building 5 Area

Sampling date: 15-Dec-16
Matrix: Groundwater

METHOD:	group				
Analyte Name	Result	Units Dilution Factor	actor Lab Flag	, Validation	Reportable
Aldrin	0.010	ug/l 1	1	C	Yes
alpha-BHC	0.010	ug/l 1	•	C	Yes
beta-BHC	0.010	ug/l 1	1	C	Yes
delta-BHC	0.010	ug/i 1	1	_	Yes
gamma-BHC (Lindane)	0.010	ug/l 1	1	_	Yes
alpha-Chlordane	0.010	ug/l 1	•	C	Yes
gamma-Chlordane	0.010	ug/l 1		c	Yes
Dieldrin	0.010	ug/l 1	1	C	Yes
4,4'-DDD	0.010	ug/l 1	ı	c	Yes
4,4'-DDE	0.010	ug/l 1	1	C	Yes
4,4'-DDT	0.010	ug/l 1	1	C	Yes
Endrin	0.010	ug/l 1	1	C	Yes
Endosulfan sulfate	0.010	ug/l 1	1	C	Yes
Endrin aldehyde	0.010	ug/l 1	1	C	Yes
Endrin ketone	0.010	ug/l 1	rs.	C	Yes
Endosulfan-l	0.010	ug/l 1	1	C	Yes
Endosulfan-II	0.010	ug/l 1		c	Yes
Heptachlor	0.010	ug/l 1	ï	C	Yes
Heptachlor epoxide	0.010	ug/l 1		C	Yes
Methoxychlor	0.020	ug/i 1	1	C	Yes
Toxaphene	0.26	ug/l 1	ı	C	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 14-Dec-16

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	-	U	Yes
alpha-BHC	0.011	ug/l	1	-	U	Yes
beta-BHC	0.011	ug/l	1	-	U	Yes
delta-BHC	0.011	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	-	U	Yes
alpha-Chiordane	0.011	ug/l	1	-	U	Yes
gamma-Chlordane	0.011	ug/l	1	-	U	Yes
Dieldrin	0.011	ug/l	1	-	U	Yes
4,4'-DDD	0.011	ug/l	1	-	U	Yes
4,4'-DDE	0.011	ug/l	1	-	U	Yes
4,4'-DDT	0.011	ug/l	1	-	U	Yes
Endrin	0.011	ug/l	1	-	U	Yes
Endosulfan sulfate	0.011	ug/l	1	-	U	Yes
Endrin aldehyde	0.011	ug/l	1	94	U	Yes
Endrin ketone	0.011	ug/l	1	-	U	Yes
Endosulfan-I	0.011	ug/l	1	-	U	Yes
Endosulfan-II	0.011	ug/l	1	-	U	Yes
Heptachlor	0.011	ug/l	1	-	U	Yes
Heptachlor epoxide	0.011	ug/l	1	-	U	Yes
Methoxychlor	0.022	ug/l	1 1	-	U	Yes
Toxaphene	0.28	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 14-Dec-16

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	•	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	•	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 16-Dec-16

Matrix: Groundwater

1412111	QD. 0001 D					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.011	ug/l	1	-	U	Yes
alpha-BHC	0.011	ug/l	1	-	U	Yes
beta-BHC	0.011	ug/l	1	-	U	Yes
delta-BHC	0.011	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.011	ug/l	1	-	U	Yes
alpha-Chlordane	0.011	ug/i	1	-	U	Yes
gamma-Chlordane	0.011	ug/l	1		U	Yes
Dieldrin	0.011	ug/l	1	-	U	Yes
4,4'-DDD	0.011	ug/l	1	7	U	Yes
4,4'-DDE	0.011	ug/l	1	_	U	Yes
4,4'-DDT	0.011	ug/l	1	-	U	Yes
Endrin	0.011	ug/l	1	-	U	Yes
Endosulfan sulfate	0.011	ug/l	1	-	U	Yes
Endrin aldehyde	0.011	ug/l	1	-	U	Yes
Endrin ketone	0.011	ug/l	1	5.00	U	Yes
Endosulfan-I	0.011	ug/l	1	-	U	Yes
Endosulfan-II	0.011	ug/l	1	-	U	Yes
Heptachlor	0.011	ug/l	1	-	U	Yes
Heptachlor epoxide	0.011	ug/l	1	-:	U	Yes
Methoxychlor	0.022	ug/l	1	-	U	Yes
Toxaphene	0.28	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 16-Dec-16

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.45	ug/l	1	-	-	Yes
alpha-BHC	0.48	ug/l	1	-	-	Yes
beta-BHC	0.53	ug/l	1	-	-	Yes
delta-BHC	0.56	ug/l	1	•	•	Yes
gamma-BHC (Lindane)	0.52	ug/l	1	•	•	Yes
alpha-Chlordane	0.58	ug/l	1	-	-	Yes
gamma-Chlordane	0.57	ug/l	1	-	-	Yes
Dieldrin	0.58	ug/l	1	-	-	Yes
4,4'-DDD	0.58	ug/l	1	-	-	Yes
4,4'-DDE	0.53	ug/l	1	•	-	Yes
4,4'-DDT	0.54	ug/l	1	-	-	Yes
Endrin	0.63	ug/l	1	-	2	Yes
Endosulfan sulfate	0.58	ug/l	1	-	-	Yes
Endrin aldehyde	0.58	ug/l	1	-	-	Yes
Endrin ketone	0.60	ug/l	1	-	-	Yes
Endosulfan-I	0.56	ug/l	1	-	-	Yes
Endosulfan-II	0.59	ug/l	1	-	-	Yes
Heptachlor	0.48	ug/l	1	-	-	Yes
Heptachlor epoxide	0.55	ug/l	1	-	-	Yes
Methoxychlor	0.60	ug/l	1	-		Yes
Toxaphene	ND	ug/l	1	2	-	Yes

Sample ID: JC33945-14MSD

Sample location: BMSMC Building 5 Area

Sampling date: 16-Dec-16

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.43	ug/l	1	-	-	Yes
alpha-BHC	0.47	ug/l	1	-	-	Yes
beta-BHC	0.53	ug/l	1	-	-	Yes
delta-BHC	0.56	ug/l	1	-	-	Yes
gamma-BHC (Lindane)	0.51	ug/l	1	-	-	Yes
alpha-Chlordane	0.56	ug/l	1	-	-	Yes
gamma-Chlordane	0.55	ug/l	1	-	-	Yes
Dieldrin	0.55	ug/l	1	-	-	Yes
4,4'-DDD	0.55	ug/l	1	-	-	Yes
4,4'-DDE	0.50	ug/l	1	-	-	Yes
4,4'-DDT	0.50	ug/l	1	-	- *	Yes
Endrin	0.60	ug/l	1	-	-	Yes
Endosulfan sulfate	0.56	ug/l	1	-	-	Yes
Endrin aldehyde	0.59	ug/l	1	-	-	Yes
Endrin ketone	0.58	ug/l	1	-	•	Yes
Endosulfan-I	0.55	ug/l	1	-	-	Yes
Endosulfan-II	0.58	ug/l	1	-	•	Yes
Heptachlor	0.46	ug/l	1	-	-	Yes
Heptachlor epoxide	0.54	ug/l	1	-	-	Yes
Methoxychlor	0.59	ug/l	1	-	-	Yes
Toxaphene	ND	ug/l	1	- 2	-	Yes

Number 10222045	Project/Case
Number:JC333945	Sampling Date:12/14-16/2016 Shipping Date:12/16/2016 EPA Region No.:2
REVIEW OF PESTICIDE ORG	ANIC PACKAGE
The following guidelines for evaluating volatile required validation actions. This document will assigudgment to make more informed decision and in users. The sample results were assessed according documents in the following order of precedence Hallowing American Hallowing Office (1988) and the sample results were assessed according documents in the following order of precedence Hallowing Office (1988) and the sample results were assessed according documents in the following order of precedence Hallowing Office (1988) and the sample results were assessed according to	sist the reviewer in using professional better serving the needs of the data of the data to USEPA data validation guidance szardous Waste Support Section SOP No. of Data Validation. The QC criteria and
The hardcopied (laboratory name) _Accutest	
Lab. Project/SDG No.:JC33945 No. of Samples:12	•
Trip blank No.:	
X Data CompletenessX Holding TimesN/A GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	_X Laboratory Control Spikes _X Field Duplicates _X Calibrations _X_ Compound Identifications _X_ Compound Quantitation _X_ Quantitation Limits
Overall Comments:TCL_pesticides_list_by_SW846-80	81B
	und not detected ted nondetect

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB, CONTACTED	DATE RECEIVED
4		
	**	
_	W 35.257	
-		
	4	
- 100		
		
	- 1	
	1	<u> </u>
		-
		4
		-
2.0		
		- 1

All criteria were met _	_X	
Criteria were not met		
and/or see below	100	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

DATE SAMPLED	DATE EXTRACTED/ANALYZED	ACTION
reserved. All sampl	es extracted and analyzed wi	thin the required criteria.
	SAMPLED	

Note:

Criteria

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 ± 2 °C): 5.3°C - OK

Actions

Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

All criteria were met)	<u></u>
Criteria were not met see below.	

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

1. Resolution Check Mixture

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

2. Performance Evaluation Mixture (PEM) Resolution Criteria

Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

Criteria

Is PEM % Resolution < 90%?

Yes? or No?

Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

All criteria were met	х_	
Criteria were not met see below		

3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

	All criteria were met	x
Criteria	were not met see below	

5. Mid-point Individual Standard Mixture Resolution -

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

All criteria were met _X_	
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	11/15/16
Dates of initial calibration verifica	ation:11/15/16
Dates of continuing calibration:_	12/21/16;_01/04/17
Dates of final calibration	*
Instrument ID numbers:	GCG8
Matrix/Level:	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial	and init	tial calib	ration verification within	the guidance docume	nt performance criteria.
Contin			% differences meet the verification not included		n the two columns. Final action taken.

Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015?

Yes? or No?

Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

Criteria

Are RT Windows calculated correctly?

Yes? or No?

Action

Recalculate the windows and use the corrected values for all evaluations.

Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

All criteria were met_	_X_	
Criteria were not met		
and/or see below		

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

Continuing Calibration Checks

Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

Action

a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No?

Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

A separate worksheet should be filled for each initial curve

All criteria were met _	_X	_
Criteria were not met		
and/or see below		

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contami	ination in the bla	anks below. Hig	h and low levels blanks	s must be treated separately.
CRQL concentr	ationN	/A		
Laboratory blan	ks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_ug/L				mit_of_0.01,_0.02,_and_0.25
Field/Equipme		LEVEL/	COMPOUND	CONCENTRATION
ANALYZED		MATRIX		UNITS
_No_target_ana	ayte_detected_i	n_the_field/equ	ipment_blanks_analyz	ed_with_this_data_package.

All criteria were met	Х_	
Criteria were not met		
and/or see below	_	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

Blank Actions for Pesticide Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
Method, Sulfur Cleanup, Instrument, Field, TCLP/SPLP	< CRQL	< CRQL	Report CRQL value with a U
		≥ CRQL	No qualification required
		< CRQL	Report CRQL value with a U
	> CRQL	≥ CRQL and ≤ blank concentration	Report blank value for sample concentration with a U
		≥ CRQL and > blank concentration	No qualification required
	= CRQL	≤ CRQL	Report CRQL value with a U
		> CRQL	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met __X__ Criteria were not met and/or see below ____

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix:_Aqueous						
Lab	Lab					
Sample ID	File ID	S1 a	S1 b	S2 a	S2 b	
JC33945-1	8G1412.D	89	85	47	43	
JC33945-2	8G1413.D	98	90	39	37	
JC33945-3	8G1414.D	105	111	43	42	
JC33945-4	8G1417.D	94	101	32	33	
JC33945-6	8G1420.D	100	105	51	53	
JC33945-9	8G1418.D	94	96	47	47	
JC33945-10	8G1419.D	100	104	71	71	
JC33945-12	8G1405.D	75	80	60	61	
JC33945-13	8G1406.D	92	98	46	47	
JC33945-14	8G1401.D	70	82	51	58	
OP99350-BS1	8G1397.D	90	95	42	42	
OP99350-MB1	8G1396.D	92	97	50	50	
OP99350-MS2	8G1402.D	67	68	90	84	
OP99350-MSD2	8G1403.D	71	76	84	83	
Surrogate Compounds		Recovery Limits				
S1 = Tetrachloro-m-xylene		26-132%				
S2 = Decachlorobiphenyl		10-118%				
(a) Recovery from GC signal #1 (b) Recovery from GC signal #2						

Note: Surrogate recoveries within laboratory control limits.

Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.
- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).

- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).
- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
 - i. Qualify detected target compounds as biased low (J-).
 - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

Summary Surrogate Actions for Pesticide Analyses

	Action*		
Criteria	Detected Target	Non-detected Target	
	Compounds	Compounds	
%R > 150%	J+	No qualification	
30% < %R < 150%	No qualification		
10% < %R < 30%	J-	UJ	
%R < 10% (sample dilution not a factor)	J-	R	
%R < 10% (sample dilution is a factor)	Use professional judgment		
RT out of RT window	Use professional judgment		
RT within RT window	No qualification		

* Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

All criteria were met _	_X	
Criteria were not met		
and/or see below	177	

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RF	D of the compounds which do not meet the o	criteria.	
Sample ID:	JC33945-14MS/MSD	Matrix/Level:_	_Groundwater

Note: MS/MSD % recoveries and RPD within laboratory control limits.

Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met_	_X_	
Criteria were not met		
and/or see below		

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS Spike Compound	Recovery Limits (%)
gamma-BHC	50 – 120
Heptachlor epoxide	50 – 150
Dieldrin	30 – 130
4,4'-DDE	50 – 150
Endrin	50 – 120
Endosulfan sulfate	50 – 120
trans-Chlordane	30 – 130
Tetrachloro-m-xylene (surrogate)	30 – 150
Decachlorobiphenyl (surrogate)	30 – 150

t the %R of compounds w LCS ID	COMPOUND		% R	QC LIMIT
				•
%_recovery_a	nd_RPD_within_labo	oratory_cor	ntrol_limits	

Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.
- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.

e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

All criteria were met
Criteria were not met
and/or see belowN/A

FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent?

Yes? or No?

N/A

Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No?

N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note: No information for florisil cartridge performance check included in data package. There is evidence tahtFlorisil cartridge was used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

All criteria were met_	N/A_	_
Criteria were not met		
and/or see below		

GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

All criteria were met	_X	
Criteria were not met		
and/or see below		

TARGET COMPOUND IDENTIFICATION

Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns?

 Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ±0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ±0.10 minutes of the RT determined from the initial calibration?

 Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of ± 25.0 %?

 Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

 Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

 Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale? Yes? or No? N/A
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

 Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

 Yes? or No?

Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following guidance:
 - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

Action:

- a. If the quantitative criteria for both columns were met (\geq 5.0 ng/µL for SCPs and \geq 125 ng/µL for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
 - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
 - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

All criteria were met _	_X
Criteria were not met	
and/or see below	- 25

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

Criteria		Action
	Detected Associated Compounds	Non-detected Associated Compounds
% Moisture < 70.0	No qualification	
70.0 < % Moisture < 90.0	J	UJ
% Moisture > 90.0	J R	

sam	ples which have ≤ 50 % solids		

Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

Dilution performed

DILUTION FACTOR	REASON FOR DILUTION
_ +	
	DILUTION FACTOR

All criteria were met _	_N/A	
Criteria were not met		
and/or see below		

FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

Sample IDS		Matnx:							
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION				
No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to assess precision. RPD within the required criteria of < 50 %.									
			'						

Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
 - i. If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
 - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
 - iii. If one sample value is not detected and the other is less than 5x, use professional iudgment to determine if qualification is appropriate.
 - iv. If both sample and duplicate results are not detected, no action is needed.

OVERALL ASSESSMENT OF DATA Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data: Results are valid; the data can be used for decision making purposes.